首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gould, Jacobson and Lehel [R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi, et al. (Eds.), Combinatorics, Graph Theory and Algorithms, vol. I, New Issues Press, Kalamazoo, MI, 1999, pp. 451-460] considered a variation of the classical Turán-type extremal problems as follows: for any simple graph H, determine the smallest even integer σ(H,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2+?+dnσ(H,n) has a realization G containing H as a subgraph. Let Ft,r,k denote the generalized friendship graph on ktkr+r vertices, that is, the graph of k copies of Kt meeting in a common r set, where Kt is the complete graph on t vertices and 0≤rt. In this paper, we determine σ(Ft,r,k,n) for k≥2, t≥3, 1≤rt−2 and n sufficiently large.  相似文献   

2.
Let D be a directed graph; the (l,ω)-Independence Number of graph D, denoted by αl,ω(D), is an important performance parameter for interconnection networks. De Bruijn networks and Kautz networks, denoted by B(d,n) and K(d,n) respectively, are versatile and efficient topological structures of interconnection networks. For l=1,2,…,n, this paper shows that αl,d−1(B(d,n))=dn,αl,d−1(K(d,n))=αl,d(K(d,n))=dn+dn−1 if d≥3 and nd−2. In particular, the paper shows the exact value of the Independence Number for B(d,1) and B(d,2) for any d. For the generalized situation, the paper obtains a lower bound αl,d−1(B(d,n))≥d2 if n≥3 and d≥5.  相似文献   

3.
Let G be a graph and d(u) denote the degree of a vertex u in G. The zeroth-order general Randi? index 0Rα(G) of the graph G is defined as ∑uV(G)d(u)α, where the summation goes over all vertices of G and α is an arbitrary real number. In this paper we correct the proof of the main Theorem 3.5 of the paper by Hu et al. [Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randi? index, Discrete Appl. Math. 155 (8) (2007) 1044-1054] and give a more general Theorem. We finally characterize 1 for α<0 the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)), where G(n,m) is a simple connected graph with n vertices and m edges.  相似文献   

4.
The detour order of a graph G, denoted by τ(G), is the order of a longest path in G. A subset S of V(G) is called a Pn-kernel of G if τ(G[S])≤n−1 and every vertex vV(G)−S is adjacent to an end-vertex of a path of order n−1 in G[S]. A partition of the vertex set of G into two sets, A and B, such that τ(G[A])≤a and τ(G[B])≤b is called an (a,b)-partition of G. In this paper we show that any graph with girth g has a Pn+1-kernel for every . Furthermore, if τ(G)=a+b, 1≤ab, and G has girth greater than , then G has an (a,b)-partition.  相似文献   

5.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

6.
Given a graph G and a vertex subset S of V(G), the broadcasting time with respect toS, denoted by b(G,S), is the minimum broadcasting time when using S as the broadcasting set. And the k-broadcasting number, denoted by bk(G), is defined by bk(G)=min{b(G,S)|SV(G),|S|=k}.Given a graph G and two vertex subsets S, S of V(G), define , d(S,S)=min{d(u,v)|uS, vS}, and for all vV(G). For all k, 1?k?|V(G)|, the k-radius of G, denoted by rk(G), is defined as rk(G)=min{d(G,S)|SV(G), |S|=k}.In this paper, we study the relation between the k-radius and the k-broadcasting numbers of graphs. We also give the 2-radius and the 2-broadcasting numbers of the grid graphs, and the k-broadcasting numbers of the complete n-partite graphs and the hypercubes.  相似文献   

7.
A graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. For a nonnegative integer k, a graph G is called a k-edge-deletable IM-extendable graph, if, for every FE(G) with |F|=k, GF is IM-extendable. In this paper, we characterize the k-edge-deletable IM-extendable graphs with minimum number of edges. We show that, for a positive integer k, if G is ak-edge-deletable IM-extendable graph on 2n vertices, then |E(G)|≥(k+2)n; furthermore, the equality holds if and only if either GKk+2,k+2, or k=4r−2 for some integer r≥3 and GC5[N2r], where N2r is the empty graph on 2r vertices and C5[N2r] is the graph obtained from C5 by replacing each vertex with a graph isomorphic to N2r.  相似文献   

8.
Pavol Hell 《Discrete Mathematics》2009,309(18):5703-5373
A sequence 〈d1,d2,…,dn〉 of non-negative integers is graphical if it is the degree sequence of some graph, that is, there exists a graph G on n vertices whose ith vertex has degree di, for 1≤in. The notion of a graphical sequence has a natural reformulation and generalization in terms of factors of complete graphs.If H=(V,E) is a graph and g and f are integer-valued functions on the vertex set V, then a (g,f)-factor of H is a subgraph G=(V,F) of H whose degree at each vertex vV lies in the interval [g(v),f(v)]. Thus, a (0,1)-factor is just a matching of H and a (1, 1)-factor is a perfect matching of H. If H is complete then a (g,f)-factor realizes a degree sequence that is consistent with the sequence of intervals 〈[g(v1),f(v1)],[g(v2),f(v2)],…,[g(vn),f(vn)]〉.Graphical sequences have been extensively studied and admit several elegant characterizations. We are interested in extending these characterizations to non-graphical sequences by introducing a natural measure of “near-graphical”. We do this in the context of minimally deficient (g,f)-factors of complete graphs. Our main result is a simple linear-time greedy algorithm for constructing minimally deficient (g,f)-factors in complete graphs that generalizes the method of Hakimi and Havel (for constructing (f,f)-factors in complete graphs, when possible). It has the added advantage of producing a certificate of minimum deficiency (through a generalization of the Erdös-Gallai characterization of (f,f)-factors in complete graphs) at no additional cost.  相似文献   

9.
For a given graph G of order n, a k-L(2,1)-labelling is defined as a function f:V(G)→{0,1,2,…k} such that |f(u)-f(v)|?2 when dG(u,v)=1 and |f(u)-f(v)|?1 when dG(u,v)=2. The L(2,1)-labelling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2,1)-labelling. The hole index ρ(G) of G is the minimum number of integers not used in a λ(G)-L(2,1)-labelling of G. We say G is full-colorable if ρ(G)=0; otherwise, it will be called non-full colorable. In this paper, we consider the graphs with λ(G)=2m and ρ(G)=m, where m is a positive integer. Our main work generalized a result by Fishburn and Roberts [No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519].  相似文献   

10.
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let α(G) denote the cardinality of a maximum independent set and fs(G) for 0≤sα(G) denote the number of independent sets of s vertices. The independence polynomial defined first by Gutman and Harary has been the focus of considerable research recently. Wingard bounded the coefficients fs(T) for trees T with n vertices: for s≥2. We generalize this result to bounds for a very large class of graphs, maximal k-degenerate graphs, a class which includes all k-trees. Additionally, we characterize all instances where our bounds are achieved, and determine exactly the independence polynomials of several classes of k-tree related graphs. Our main theorems generalize several related results known before.  相似文献   

11.
Given a graph G, a proper labelingf of G is a one-to-one function from V(G) onto {1,2,…,|V(G)|}. For a proper labeling f of G, the profile widthwf(v) of a vertex v is the minimum value of f(v)−f(x), where x belongs to the closed neighborhood of v. The profile of a proper labelingfofG, denoted by Pf(G), is the sum of all the wf(v), where vV(G). The profile ofG is the minimum value of Pf(G), where f runs over all proper labeling of G. In this paper, we show that if the vertices of a graph G can be ordered to satisfy a special neighborhood property, then so can the graph G×Qn. This can be used to determine the profile of Qn and Km×Qn.  相似文献   

12.
A spanning tree T of a graph G is said to be a treet-spanner if the distance between any two vertices in T is at most t times their distance in G. A graph that has a tree t-spanner is called a treet-spanner admissible graph. The problem of deciding whether a graph is tree t-spanner admissible is NP-complete for any fixed t≥4 and is linearly solvable for t≤2. The case t=3 still remains open. A chordal graph is called a 2-sep chordal graph if all of its minimal ab vertex separators for every pair of non-adjacent vertices a and b are of size two. It is known that not all 2-sep chordal graphs admit tree 3-spanners. This paper presents a structural characterization and a linear time recognition algorithm of tree 3-spanner admissible 2-sep chordal graphs. Finally, a linear time algorithm to construct a tree 3-spanner of a tree 3-spanner admissible 2-sep chordal graph is proposed.  相似文献   

13.
On island sequences of labelings with a condition at distance two   总被引:1,自引:0,他引:1  
An L(2,1)-labeling of a graph G is a function f from the vertex set of G to the set of nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1, and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between the pair of vertices x,y. The lambda number of G, denoted λ(G), is the minimum range of labels used over all L(2,1)-labelings of G. An L(2,1)-labeling of G which achieves the range λ(G) is referred to as a λ-labeling. A hole of an L(2,1)-labeling is an unused integer within the range of integers used. The hole index of G, denoted ρ(G), is the minimum number of holes taken over all its λ-labelings. An island of a given λ-labeling of G with ρ(G) holes is a maximal set of consecutive integers used by the labeling. Georges and Mauro [J.P. Georges, D.W. Mauro, On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] inquired about the existence of a connected graph G with ρ(G)≥1 possessing two λ-labelings with different ordered sequences of island cardinalities. This paper provides an infinite family of such graphs together with their lambda numbers and hole indices. Key to our discussion is the determination of the path covering number of certain 2-sparse graphs, that is, graphs containing no pair of adjacent vertices of degree greater than 2.  相似文献   

14.
Given two nonnegative integers s and t, a graph G is (s,t)-supereulerian if for any disjoint sets X,YE(G) with |X|≤s and |Y|≤t, there is a spanning eulerian subgraph H of G that contains X and avoids Y. We prove that if G is connected and locally k-edge-connected, then G is (s,t)-supereulerian, for any pair of nonnegative integers s and t with s+tk−1. We further show that if s+tk and G is a connected, locally k-edge-connected graph, then for any disjoint sets X,YE(G) with |X|≤s and |Yt, there is a spanning eulerian subgraph H that contains X and avoids Y, if and only if GY is not contractible to K2 or to K2,l with l odd.  相似文献   

15.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

16.
We study the long time behavior of solutions for damped wave equations with absorption. These equations are generally accepted as models of wave propagation in heterogeneous media with space-time dependent friction a(t,x)ut and nonlinear absorption |u|p−1u (Ikawa (2000) [17]). We consider 1<p<(n+2)/(n−2) and separable a(t,x)=λ(x)η(t) with λ(x)∼(1+|x|)α and η(t)∼(1+t)β satisfying conditions (A1) or (A2) which are given. The main results are precise decay estimates for the energy, L2 and Lp+1 norms of solutions. We also observe the following behavior: if α∈[0,1), β∈(−1,1) and 0<α+β<1, there are three different regions for the decay of solutions depending on p; if α∈(−,0) and β∈(−1,1), there are only two different regions for the decay of the solutions depending on p.  相似文献   

17.
Let G=(V,E) be a finite, simple and undirected graph. For SV, let δ(S,G)={(u,v)∈E:uS and vVS} be the edge boundary of S. Given an integer i, 1≤i≤|V|, let the edge isoperimetric value of G at i be defined as be(i,G)=minSV;|S|=i|δ(S,G)|. The edge isoperimetric peak of G is defined as be(G)=max1≤j≤|V|be(j,G). Let bv(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi:10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees.The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as ), and where c1, c2 are constants. For a complete t-ary tree of depth d (denoted as ) and dclogt where c is a constant, we show that and where c1, c2 are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T=(V,E,r) be a finite, connected and rooted tree — the root being the vertex r. Define a weight function w:VN where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index η(T) be defined as the number of distinct weights in the tree, i.e η(T)=|{w(u):uV}|. For a positive integer k, let ?(k)=|{iN:1≤i≤|V|,be(i,G)≤k}|. We show that .  相似文献   

18.
Let G=(V,E) be a graph and let r≥1 be an integer. For a set DV, define Nr[x]={yV:d(x,y)≤r} and Dr(x)=Nr[x]∩D, where d(x,y) denotes the number of edges in any shortest path between x and y. D is known as an r-identifying code (r-locating-dominating set, respectively), if for all vertices xV (xV?D, respectively), Dr(x) are all nonempty and different. Roberts and Roberts [D.L. Roberts, F.S. Roberts, Locating sensors in paths and cycles: the case of 2-identifying codes, European Journal of Combinatorics 29 (2008) 72-82] provided complete results for the paths and cycles when r=2. In this paper, we provide results for a remaining open case in cycles and complete results in paths for r-identifying codes; we also give complete results for 2-locating-dominating sets in cycles, which completes the results of Bertrand et al. [N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes on chains and cycles, European Journal of Combinatorics 25 (2004) 969-987].  相似文献   

19.
A nonincreasing sequence of nonnegative integers π=(d1,d2,…,dn) is graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said to realizeπ. For a given graph H, a graphic sequence π is potentiallyH-graphic if there is some realization of π containing H as a (weak) subgraph. Let σ(π) denote the sum of the terms of π. For a graph H and nZ+, σ(H,n) is defined as the smallest even integer m so that every n-term graphic sequence π with σ(π)≥m is potentially H-graphic. Let denote the complete t partite graph such that each partite set has exactly s vertices. We show that and obtain the exact value of σ(Kj+Ks,s,n) for n sufficiently large. Consequently, we obtain the exact value of for n sufficiently large.  相似文献   

20.
Given a graph G, a function f:V(G)→{1,2,…,k} is a k-ranking of G if f(u)=f(v) implies every u-v path contains a vertex w such that f(w)>f(u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The arank number of a graph, denoted ψr(G), is the largest k such that G has a minimal k-ranking. We present new results involving minimal k-rankings of paths. In particular, we determine ψr(Pn), a problem posed by Laskar and Pillone in 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号