首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we derive the field of displacements and strains for thin-walled open composite beams with composite laminated material including in their kinematics flexural and torsional shear deformations effects. The equilibrium equations are defined through the variational formulation and show that is possible to formulate Co finite elements taking into account the torsional shear deformation. Stress-strain relationships for the cross-section of thin-walled composite beams are obtained by extending first-order laminate (FSDT: first-order shear deformation) theory and using a «free stress resultant condition at the boundary». Three different one-dimensional finite elements with Co continuity are formulated for the study of thin-walled open composite beams and they are labelled as BSW (beam with shear and warping). The influence of the integration strategy in the BSW elements is evaluated via the shear-locking phenomenon and the rate of convergence for displacements and rotations. The stiffness matrix integration is compared using exact and reduced integration methods. Examples of pure torsion and flexo-torsion in a cantilever composite beam are performed. Numerical results are compared to those reported by other authors.  相似文献   

2.
The finite element dynamic response of an unsymmetric composite laminated orthotropic beam, subjected to moving loads, has been studied. One-dimensional finite element based on classical lamination theory, first-order shear deformation theory, and higher-order shear deformation theory having 16, 20 and 24 degrees of freedom, respectively, are developed to study the effects of extension, bending, and transverse shear deformation. The theories also account for the Poisson effect, thus, the lateral strains and curvatures can be expressed in terms of the axial and transverse strains and curvatures and the characteristic couplings (bend–stretch, shear–stretch and bend–twist couplings) are not lost. The dynamic response of symmetric cross-ply and unsymmetric angle-ply laminated beams under the action of a moving load have been compared to the results of an isotropic simple beam. The formulation also has been applied to the static and free vibration analysis.  相似文献   

3.
A simple C0 isoparametric finite element formulation based on a set of higher-order displacement models for the analysis of symmetric and asymmetric multilayered composite and sandwich beams subjected to sinusoidal loading is presented. These theories do not require the usual shear correction coefficients which are generally associated with the Timoshenko theory. The four-noded Lagrangian cubic element with kinematic models having four, five and six degrees of freedom per node is used. A computer algorithm is developed which incorporates realistic prediction of transverse interlaminar stresses from equilibrium equations. By comparing the results obtained with the elasticity solution and the CPT (classical laminated plate theory) it is shown that the present higher-order theories give a much better approximation to the behaviour of laminated composite beams, both thick and thin. In addition numerical results for unsymmetric sandwich beams are presented which may serve as benchmark for future investigations.  相似文献   

4.
5.
A gradient-enriched shell formulation is introduced in the present study based on the first order shear deformation shell model and the stress gradient and strain-inertia gradient elasticity theories are used for dynamic analysis of single walled carbon nanotubes. It provides extensions of the first order shear deformation shell formulation with additional higher-order spatial derivatives of strains and stresses. The higher-order terms are introduced in the formulation by using the Laplacian of the corresponding lower-order terms. The proposed shell formulation includes two length scale size parameters related to the strain gradients and inertia gradients. The effects of the transverse shear, aspect ratio, circumferential and half-axial wave numbers and length scale parameters on different vibration modes of the single-walled carbon nanotubes are elucidated. The results are also compared with those obtained from a classical shell theory with Sanders–Koiter strain-displacement relationships.  相似文献   

6.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

7.
This paper presents a novel finite element formulation for static, free vibration and buckling analyses of laminated composite plates. The idea relies on a combination of node-based smoothing discrete shear gap method with the higher-order shear deformation plate theory (HSDT) to give a so-called NS-DSG3 element. The higher-order shear deformation plate theory (HSDT) is introduced in the present method to remove the shear correction factors and improve the accuracy of transverse shear stresses. The formulation uses only linear approximations and its implementation into finite element programs is quite simple and efficient. The numerical examples demonstrated that the present element is free of shear locking and shows high reliability and accuracy compared to other published solutions in the literature.  相似文献   

8.
This study investigates the nonlinear free vibration of functionally graded material (FGM) beams by different shear deformation theories. The volume fractions of the material constituents and effective material properties are assumed to be changing in the thickness direction according to the power-law form. The von Kármán geometric nonlinearity has been considered in the formulation. The Ritz method and Lagrange equation are adopted to yield the discrete formulations. A direct numerical integration method for the motion equation in matrix form is developed to solve the nonlinear frequencies of FGM beams. Comparing with the global concordant deformation assumption (GCDA), a new deformation assumption named as local concordant deformation assumption (LCDA) is proposed in this study. The LCDA fits with the real deformation of the vibrating beam better, thus more accurate results of the nonlinear frequency can be expected. In numerical results, the comparison study of the GCDA and LCDA is carried out. In addition, the effects of power-law index, slenderness ratio and maximum deflection for different shear deformation theories and boundary conditions on the nonlinear frequency of the beam are discussed.  相似文献   

9.
夹芯梁的精确解法   总被引:1,自引:0,他引:1  
夹芯梁与普通梁的本质区别在于剪切引起芯层横截面严重的而又不均匀的翘曲变形,其应力分布已远非初等理论所能描述,而正在广泛应用的经典夹层理论却都建立在平面假设基础上,尤其不能正确反映弱芯的轻质夹层结构的行为,本文放弃了不合理的假设,将夹芯梁视为一般层状弹性体,严格按弹性理论导出了既满足控制方程又同时满足全部边界条件、层间的应力及位移的连续条件的封闭解.它可确切地反映夹芯梁的位移形态和应力分布,并从不同角度,包括多种实验和FEM数值解,验证了它的正确性.  相似文献   

10.
In the present paper, a refined trigonometric higher-order plate theory is simply derived, which satisfies the free surface conditions. Moreover, the number of unknowns of this theory is the least one comparing with other shear theories. The effects of transverse shear strains as well as the transverse normal strain are taken into account. The number of unknown functions involved in the present theory is only four as against six or more in case of other shear and normal deformation theories. The bending response of FG rectangular plates is presented. A comparison with the corresponding results is made to check the accuracy and efficiency of the present theory. Additional results for all displacements and stresses are investigated through-the-thickness of the FG rectangular plate.  相似文献   

11.
The free-vibration behavior of symmetrically laminated fiber-reinforced composite beams with different boundary conditions is examined. The effects of shear deformation and rotary inertia, separately and/or in combination, on the free-vibration properties of the beams are investigated. The finite-difference method is used to solve the partial differential equations describing the free-vibration motion in each case. The effect of shear deformation on the natural frequencies is considerable, especially for higher frequencies, whereas the influence of rotary inertia is less significant. The study includes comparisons with results available in the literature. In addition, the impact of such factors as the span/depth ratio, fiber orientation, stacking sequence, and material type on free vibrations of the composite beams is investigated. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 3, pp. 331–346, May–June, 2006.  相似文献   

12.
Two hyperbolic displacement models, HPSDT1 and HPSDT2, are developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher-order models and with data found in the literature. It is established that the HPSDT1 model is more accurate than some theories of laminates developed previously, and therefore the analysis can be expanded to laminated composite shells.  相似文献   

13.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures.  相似文献   

14.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

15.
An analytical approach for static bending and buckling analyses of curved nanobeams using the differential constitutive law, consequent to Eringen’s strain-driven integral model coupled with a higher-order shear deformation accounting for through thickness stretching is presented. The formulation is general in the sense that it can be deduced to examine the influence of different structural theories, for static and dynamic analyses of curved nanobeams. The governing equations derived using Hamiltons principle are solved in conjunction with Naviers solutions. The formulation is validated considering problems for which solutions are available. A comparative study is made here by various theories obtained through the formulation. The effects various structural parameters such as thickness ratio, beam length, rise of the curved beam, and nonlocal scale parameter are brought out on bending and stability characteristics of curved nanobeams.  相似文献   

16.
基于现有空间曲线梁理论,考虑与扭转有关的翘曲变形和横向剪切变形的影响,建立了自然标架下空间曲线梁的内力和变形的解析解答.将该解答应用于受均布扭矩和竖向分布荷载的平面曲线梁的分析,将所得结果与Heins解答进行比较,证明了理论的正确.并应用该理论分析了解析式中翘曲和横向剪切变形项的影响.  相似文献   

17.
A finite element formulation of the equations governing laminated anisotropic plates using Reddy's higher-order theory is presented. This simple higher-order shear deformable theory takes into account the parabolic distribution of the transverse shear deformation through the thickness of the plate and contains the same unknowns as in the first-order shear deformation theory. Finite element solutions are presented for rectangular plates of different layups, such as cross-ply, antisymmetric angle-ply, and sandwich plates with various material properties, boundaries, and plate aspect ratios. The numerical results are compared with the available closed-form results, the 3-D linear elasticity theory results, and the other available numerical results. A comparison is also made with test data from a laminated cantilever plate.  相似文献   

18.
The free vibration of laminated composite plates on elastic foundations is examined by using a refined hyperbolic shear deformation theory. This theory is based on the assumption that the transverse displacements consist of bending and shear components where the bending components do not contribute to shear forces, and likewise, the shear components do not contribute to bending moments. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second foundation parameter is zero. The equation of motion for simply supported thick laminated rectangular plates resting on an elastic foundation is obtained through the use of Hamilton’s principle. The numerical results found in the present analysis for free the vibration of cross-ply laminated plates on elastic foundations are presented and compared with those available in the literature. The theory proposed is not only accurate, but also efficient in predicting the natural frequencies of laminated composite plates.  相似文献   

19.
A finite element model is developed to study the large-amplitude free vibrations of generally-layered laminated composite beams. The Poisson effect, which is often neglected, is included in the laminated beam constitutive equation. The large deformation is accounted for by using von Karman strains and the transverse shear deformation is incorporated using a higher order theory. The beam element has eight degrees of freedom with the inplane displacement, transverse displacement, bending slope and bending rotation as the variables at each node. The direct iteration method is used to solve the nonlinear equations which are evaluated at the point of reversal of motion. The influence of boundary conditions, beam geometries, Poisson effect, and ply orientations on the nonlinear frequencies and mode shapes are demonstrated.  相似文献   

20.
新型空间薄壁梁单元   总被引:2,自引:0,他引:2  
基于Timoshenko梁理论和Vlasov薄壁杆件约束扭转理论,建立了具有内部结点的新型空间薄壁截面梁单元.通过对弯曲转角和翘曲角采取独立插值的方法,考虑了横向剪切变形,扭转剪切变形及其耦合作用,弯曲变形和扭转变形的耦合以及二次剪应力等因素影响,由Hellinger-Reissner广义变分原理,推得单元刚度矩阵.算例表明所建模型具有良好的精度,可用于空间薄壁杆系结构的有限元分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号