首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Four new lupane triterpenoid saponins, along with one known lupane and eight hederagenin saponins, were isolated from the EtOH extract of the buds of Lonicera similis Hemsl. The structures of the new compounds were established as 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl 23-hydroxybetulinic acid 28-O-β-D-glucopyranosyl ester (lonisimilioside A, 1), 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl 23-hydroxybetulinic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester (lonisimilioside B, 2), 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl betulinic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester (lonisimilioside C, 3) and 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl betulinic acid 28-O-β-D-glucopyranosyl ester (lonisimilioside D, 4), respectively. The cytotoxic activities of the isolates against human cancer cell lines HepG2, MCF-7 and A-549 were evaluated. Only the monodesmosidic saponin with a free carboxyl group at C-28 (12) exhibited significant cytotoxicities against HepG2, MCF-7 and A-549 cell lines with the IC50 values of 8.98 ± 0.19, 12.48 ± 0.45 and 11.62 ± 0.54 μM, respectively. Furthermore, Hoechst fluorescence 33342 staining was used to demonstrate that 12 could induce HepG2 and A-549 cells apoptosis significantly.  相似文献   

2.
Abstract

In the present study, five new ent-kaurane diterpenes including 4α-hydroxy-17,19-dinor-ent-kaurane-16-one (1), 4β-hydroxy-16β-H-18-nor-ent-kaurane-17-oic acid (2), 4β,17-dihydroxy-16α-acetoxy-18-nor-ent-kaurane (3), Annosquamosin Z (4) and 16α-H-ent-kaurane-17,18-dioic acid, 17-methy ester (5) were isolated from Annona squamosa L. pericarp. The compounds were also evaluated for their cytotoxic activities against SMMC-7721 and HepG2 cell lines, among which compound 3 exhibited potent cytotoxicity with IC50 value of less than 20?μM.  相似文献   

3.
A new chalcone named as balanochalcone (1) together with eight known compounds, methyl caffeate (2), β-hydroxydihydrochalcone (3), methyl gallate (4), dimethyl-6,9,10-trihydroxybenzo[kl]xanthene-1,2-dicarboxylate (5), p-coumaric acid (6), quercetin (7), scopoletin (8) and pinoresinol (9) have been isolated from the ethyl acetate extract of Vietnamese Balanophora laxiflora Hemsl. Their structures were characterised by IR, UV, HR-ESI-MS, 1D and 2D NMR and CD spectroscopies. Compounds 2 and 5 showed moderate cytotoxicity against four cancer cell lines, KB (a human epidermal carcinoma), MCF7 (human breast carcinoma), SK-LU-1 (human lung carcinoma) and HepG2 (hepatocellular carcinoma). In addition, compounds 1 and 5 showed moderate antioxidant activity.  相似文献   

4.
ABSTRACT

Coupling of the sodium salt of S-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-galacto-2-nonulopyranosylonate)-(2→'6)-2,3,4-tri-O-acetyl-1,6-dithio-β-D-glucopyranose (5), -β-D-galactopyranose (8), or S-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→'6)-O-(2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranosyl)-(1→'4)-2,3,6-tri-O-acetyl-1-thio-β-D-glucopyranose (12), which were prepared from the corresponding 1-hydroxy compounds, 1, 2, and 9, via 1-chlorination, displacement with thioacetyl group, and S-deacetylation, with (2S,3R,4E)-2-azido-3-O-benzoyl-1-O-(p-toluenesulfonyl)-4-octadecene-1,3-diol (13), gave the corresponding β-thioglycosides 14, 18 and 22, respectively in good yields. The β-thioglycosides obtained were converted, via selective reduction of the azide group, condensation with octadecanoic acid, and removal of the protecting groups, into the title compounds.  相似文献   

5.
薰衣草化学成分的研究   总被引:1,自引:0,他引:1  
吴霞  刘净  于志斌  叶蕴华  周亚伟 《化学学报》2007,65(16):1649-1653
采用各种柱色谱方法对新疆产薰衣草花的95%乙醇提取物的化学成分进行分离纯化, 分离得到9个化合物, 根据理化性质和光谱数据分别鉴定为5'-β-D-glucopyranosyloxyjasmonic butyl ester (1), 5'-β-D-glucopyranosyloxyjasmonic acid (2), dichotomoside E (3), 丁二酸(4), 咖啡酸(5), 3-甲氧基-4-O-β-D-葡萄糖苷-阿魏酸(6), β-谷甾醇(7), 熊果酸(8), 胡萝卜苷(9). 其中化合物1为新化合物, 化合物29均为首次从薰衣草中分离得到.  相似文献   

6.
The dichloromethane bark extract of Garcinia hombroniana yielded one new cycloartane triterpene; (22Z,24E)-3β-hydroxycycloart-14,22,24-trien-26-oic acid (1) together with five known compounds: garcihombronane G (2), garcihombronane J (3), 3β acetoxy-9α-hydroxy-17,14-friedolanostan-14,24-dien-26-oic acid (4), (22Z, 24E)-3β, 9α-dihydroxy-17,14-friedolanostan-14,22,24-trien-26-oic acid (5) and 3β, 23α-dihydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid (6). Their structures were established by the spectral techniques of NMR and ESI-MS. These compounds together with some previously isolated compounds; garcihombronane B (7), garcihombronane D (8) 2,3’,4,5’-tetrahydroxy-6-methoxybenzophenone (9), volkensiflavone (10), 4’’-O-methyll-volkensiflavone (11), volkensiflavone-7-O-glucopyranoside (12), volkensiflavone-7-O-rhamnopyranoside (13), Morelloflavone (14), 3’’-O-methyl-morelloflavone (15) and morelloflavone-7-O-glucopyranoside (16) were evaluated for cholinesterase enzymes inhibitory activities using acetylcholinesterase and butyrylcholinesterase. In these activities, compounds 1–9 showed good dual inhibition on both the enzymes while compounds 10–16 did not reasonably contribute to both the cholinesterases inhibitory effects.  相似文献   

7.
Two new glycosides of phytolaccagenin and 2β-hydroxyoleanoic acid, namely bonushenricoside A (3) and bonushenricoside B (5) together with four known saponins, respectively compounds 3-O-L-α-arabinopyranosyl-bayogenin-28-O-β-glucopyranosyl ester (1), 3-O-β-glucuronopyranosyl-2β-hydroxygypsogenin-28-O-β-glucopyranosyl ester (2), 3-O-β-glucuronopyranosyl-bayogenin-28-O-β-glucopyranosyl ester (4) and 3-O-β-glucuronopyranosyl-medicagenic acid-28-β-xylopyranosyl(1→4)-α-rhamnopyranosyl(1→2)-α-arabinopyranosyl ester (6) were isolated from the roots of Chenopodium bonus-henricus L. The structures of the compounds were determined by means of spectroscopic methods (1D and 2D NMR, IR and HRMS). The MeOH extract and compounds were tested for cytotoxic activity on five leukemic cell lines (HL-60, SKW-3, Jurkat E6-1, BV-173 and K-562). In addition, the ability of metanolic extract and saponins to modulate the interleukin-2 production in PHA/PMA stimulated Jurkat E6-1 cells was investigated as well.  相似文献   

8.
The chemical investigation of the extract of the dried leaves of Rauvolfia caffra (Sond) (synonym Rauvolfia macrophylla) (Apocynaceae) led to isolation of a new glycoside derivative, rauvolfianine (1) as well as six known compounds: oleanolic acid (2), sitosterol-3-O-β-D-glucopyranoside (3), betulinic acid (4), vellosimine (5), sarpagine (6) and D-fructofuranosyl-β-(2→1)-α-D-glucopyranoside (7). Compounds 1, 2, 3, 4 and 7 were evaluated for antitubercular activity. Compounds 1 and 2 were the most active (MIC = 7.8125 and 31.25 μg/mL) towards the Isoniazid resistant strain of Mycobacterium tuberculosis AC45. Their structures and relative stereochemistry were elucidated by spectroscopic methods.  相似文献   

9.
ABSTRACT

3-O-Sulfo glucuronyl paragloboside derivatives (pentasaccharides) have been synthesized. The important intermediate designed for a facile sulfation in the last step and effective, stereocontrolled glycosidation, methyl (4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-α-D-glucopyranosyl trichloroacetimidate)uronate (8) was prepared from methyl [2-(trimethylsilyl)ethyl β-D-glucopyranosid]uronate (3) via selective 4-O-acetylation, 2-O-benzoylation, 3-O-levulinoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation. The glycosylation of 8 with 2-(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (9) using trimethylsilyl trifluoromethanesulfonate gave 2-(trimethylsilyl)ethyl O-(methyl 4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-β-D-glucopyranosyluronate)-(1→3)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (10), which was transformed via removal of the benzyl group, benzoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the disaccharide donor 13. On the other hand, 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (20) as the acceptor was prepared from 2-(trimethylsilyl)ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (14) via O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, imidate formation, coupling with 2-(trimethylsilyl)ethyl O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (18), removal of the O-acetyl and N-phthaloyl group followed by N-acetylation. Condensation of 13 with 20 using trimethylsilyl trifluoromethanesulfonate afforded the desired pentasaccharide 21, which was transformed by removal of the benzyl group, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the pentasaccharide donor 24. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (25) with 24 gave the desired β-glycoside 26, which was transformed into the four target compounds, via reduction of the azido group, coupling with octadecanoic acid or tetracosanoic acid, selective removal of the levulinoyl group, O-sulfation, hydrolysis of the methyl ester group and O-deacylation.  相似文献   

10.
Biotransformation of oleanolic acid (OA) by Circinella muscae AS 3.2695 was investigated. Nine hydroxylated and glycosylated metabolites (1–9) were obtained. Their structures were elucidated as 3β,7β-dihydroxyolean-12-en-28-oic acid (1), 3β,7β,21β-trihydroxyolean-12-en-28-oic acid (2), 3β,7α,21β-trihydroxyolean-12-en- 28-oic acid (3), 3β,7β,15α-trihydroxyolean-12-en-28-oic acid (4), 7β,15α-dihydroxy- 3-oxo-olean-12-en-28-oic acid (5), 7β-hydroxy-3-oxo-olean-12-en-28-oic acid (6), oleanolic acid-28-O-β-D-glucopyranosyl ester (7), 3β,21β-dihydroxyolean-12-en-28- oic acid-28-O-β-D-glucopyranosyl ester (8), and 3β,7β,15α-trihydroxyolean-12-en- 28-oic acid-28-O-β-D-glucopyranosyl ester (9) by spectroscopic analysis. Among them, compounds 4 and 9 were new compounds. In addition, anti-inflammatory activities were assayed and evaluated for the isolated metabolites. Most of the metabolites exhibited significant inhibitory activities on lipopolysaccharides-induced NO production in RAW 264.7 cells.  相似文献   

11.
Abstract

Three sialyl-Lex ganglioside analogs containing carboxymethyl, sulfate, and phosphate groups in place of the sialic acid moiety, have been synthesized. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)-O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl) - (1→3) - 2, 4, 6-tri-O-benzyl-β-d-galactopyranoside (10) with methyl 2,4,6-tri-O-benzoyl-3-O-(methoxycarbonyl)methyl-1-thio-β-d-galactopyranoside (6) or methyl 2-O-benzoyl-4,6-O-benzylidene-3-O-levulinoyl-1-thio-β-d-galactopyranoside (9) using dimethyl-(methylthio)sulfonium triflate (DMTST) as a promoter, afforded the corresponding tetrasaccharide derivatives 11 and 19. Compounds 11 and 19 were converted into the α-trichloroacetimidates 14 and 23, via reductive removal of the benzyl and benzylidene groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) or 2-(tetradecyl)hexadecan-1-ol (24), gave the lipophilic derivatives 16 and 25. Compound 16 was transformed, via selective reduction of the azido group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title compound 18 in good yield. Compound 25 was treated with hydrazine acetate to give compound 26, which in turn was transformed, via sulfation or phosphorylation, and O-deacylation, into the target compounds 28 and 31.  相似文献   

12.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

13.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

14.
Abstract

Stereocontrolled synthesis of sialyl Lex epitope and its ceramide derivative with regard to the introduction of galactose or β-D-galactosyl ceramide into the terminal N-acetylglucosamine residue of sialyl Lex determinant is described. Königs-Knorr condensation of 2-(trimethylsilyl)ethyl 2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (4) with 3, 4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-D-glucopyranosyl bromide (5) gave the desired β-glycoside 6, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-4, 6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(l→3)-2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (8) via removal of the phthaloyl and O-acetyl groups, followed by N-acetylation and 4, 6-O-benzylidenation. Glycosylation of 8 with methyl 2, 3, 4-tri-O-benzyl-1-thio-β-L-fucopyranoside (9) gave the α-glycoside (10), which was transformed by reductive ring-opening of the benzyliderie acetal into the acceptor (11). Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 11 with methyl O-(methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2, 4, 6-tri-O-benzoyl-l-thio-β-D-galactopyra-noside (12) afforded the desired pentasaccharide (13), which was converted into the α-trichloroacetimidate 16 via reductive removal of the benzyl groups, then O-acetylation, removal of the 2-(trimethyIsilyl)ethyl group and treatment with trichloroacetonitrile. Condensation of 16 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l, 3-diol (18) gave the β-glycoside 19, which was transformed into the title compound 21, via reduction of the azido group, coupling with octadecanoic acid, O-deacylation and hydrolysis of the methyl ester group. On the other hand, O-deacylation of 13 and subsequent hydrolysis of the methyl ester group gave the pentasaccharide epitope 17.  相似文献   

15.
A new triterpene saponin, 3β,16β,23α,28β,30β-pentahydroxyl-olean-11,13(18)-dien-3β-yl-[β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→3)]-β-d-fucopyranoside, was named Clinoposaponin D (1), together with six known triterpene saponins, buddlejasaponin IVb (2), buddlejasaponin IVa (3), buddlejasaponin IV (4), clinopodisides D (5), 11α,16β,23,28-Tetrahydroxyolean-12-en-3β-yl-[β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→3)]-β-d-fucopyranoside (6) and prosaikogenin A (7), and two known triterpenes, saikogenin A (8) and saikogenin F (9) were isolated from Clinopodium chinense (Benth.) O. Kuntze. Their structures were elucidated on the basis of 1D, 2D NMR and MS analysis. Meanwhile, the effects of all compounds on rabbit platelet aggregation and thrombin time (TT) were investigated in vitro. Compounds 4 and 7 had significant promoting effects on platelet aggregation with EC50 value at 53.4 and 12.2 μM, respectively. In addition, the highest concentration (200 μM) of compounds 2 and 9 shortened TT by 20.6 and 25.1%, respectively.  相似文献   

16.
Nine compounds were isolated from Nocardia sp. YIM 64630, and their structures were elucidated as 5′-O-acetyl-2′-deoxyuridine (1), 22E,24R-5α,6α-epoxyergosta-8(14),22-diene-3β,7α-diol (2), 22E,24R-5α,6α-epoxyergosta-8,22-diene-3β,7α-diol (3), 22E,24R-ergosta-7,22-diene-3β,5α,6β-triol (4), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (5), 4′,5,6-trihydroxy-7-methoxyisoflavone (6), 2,4,4′-trihydroxy-deoxybenzoin (7), methyl [4-hydroxyphenyl]acetate (8) and daidzein by extensive spectroscopic analyses. Compound 1 was isolated from natural resources for the first time. The antimicrobial and antioxidant activities of compounds 18 were investigated.  相似文献   

17.
Abstract

A new derivative of epicatechin glucopyranoside, (2R,3R)-3,7,4'-trihydroxy-5,3'-dimethoxyflavan 7-O-β-d-glucopyranoside (1), together with three mononuclear phenolic acid esters, methyl orsellinate (2), ethyl orsellinate (3) and methyl β-orcinolcarboxylate (4) were isolated from the bark of Styrax suberifolius. The structures of 14 were determined on the basis of extensive analysis of NMR and MS spectra combined with chemical hydrolysis. The antifungal activities of the isolated compounds against three plant pathogenic fungi, Alternaria solani, Fusarium oxysporum and Phomopsis cytospore were evaluated using radial growth inhibition assay. Compounds 2, 3 and 4 exerted selective inhibitory activities against the tested fungi. Among of them, methyl β-orcinolcarboxylate (4) exhibited obvious inhibitory effect against P. cytospore, with an inhibition rate of 86.72% at 100?μg/ml.  相似文献   

18.
β-Sitosterol-3-O-(6?-O-13?-octadecenoyl)-β-D-glucoside (1), a new acyl β-sitosteryl glucoside, along with three known compounds β-sitosterol-3-O-β-D-glucoside (2), β-sitosterol (3) and methyl gallate (4) have been isolated from the ethyl acetate soluble fraction of methanolic extract of Ailanthus altissima fruits. Their structures were elucidated through spectroscopic data including 2D NMR, ESI-MS, methanolysis and oxidative cleavage of double bond. Antibacterial, antifungal, cytotoxic, phytotoxic and insecticidal activities were evaluated of compound 1, crude extract and its fractions so far for the first time. Pharmacological activities results showed that n-butanol fraction was good active against Pseudomonas aeruginosa and Salmonella typhi bacteria, and moderate active against Microsporum canis fungus. Crude extract, n-butanol and aqueous fractions showed good cytotoxicity. Moreover, compound 1, extract and all fractions showed notable phytotoxicity at higher concentrations, whereas all inactive against assayed insects.  相似文献   

19.
The synthesis of a number of C-4 and C-9 substituted derivatives of KDN2en methyl ester 2 is reported. 9-Deoxy-9-iodo, 9-azido-9-deoxy and 9-O-methyl derivatives of 2(compounds 5, 7and 9) were prepared from the corresponding 9-O-tosylate, methyl 2,6-anhydro-3-deoxy-9-O-p-toluenesulfonyl-D-glycero-D-galacto-non-2-enonate (3). These compounds have been fully characterised as the peracetates 6, 8 and 10. Treatment of 3 with KSAc gave the 9-thioacetyl derivative which was isolated as the peracetate 11. 4-C-Ethenyl-4-deoxy (14), 4-C-phenyl-4-deoxy (15) and 4-C-[1-(methoxycarbonyl)ethenyl]-4-deoxy (16) derivatives of 2were prepared via the palladium-catalysed coupling of the 4-epi-chloride, methyl 5,7,8,9-tetra-O-acetyl-2,6-anhydro-4-chloro-3,4-dideoxy-D-glycero-D-talo-non-2-enonate (12) with the appropriate organostannanes.  相似文献   

20.
Abstract

A stereo controlled, facile total synthesis of gangliosides GM1 and GD1a, in connection with systematic synthesis of ganglio-series of ganglioside, is described. Glycosylation of 2-(trimethylsilyl) ethyl O-(2-acetamido-6-O-benzoyl-2-deoxy-(β-D-galactopyranosyl)-(l→4)-O-[(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2–nonulopyranosylonate)-(2→3)]-O-2,6-di-O-benzyl-β-D-galacto-pyranosyl)-(l→40)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4), with methyl 2,4,6-tri-O-benzoyl-3-O-benzyl-l-thio-β-D-galactopyranoside (8) or methyl O-(methyl 5-acetamido -4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-l-thio-β-D-galactopyranoside (9) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) or dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the corresponding [β-glycoside 10 and 18 in 66 and 62% yields, which were converted, via reductive removal of the benzyl groups, O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, and subsequent imidate formation, into the α-trichloroacetimidates 13 and 21. Glycosylation of (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (14) with 13 or 21 by use of trimethylsilyl trifluoromethanesulfonate gave the corresponding β-glycoside 15 and 22, which on channeling through selective reduction of die azido group, coupling of the thus formed amino group with octadecanoic acid, O-deacylation, and saponification of the methyl ester group, gave the tital gangliosides GM1 and GD1a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号