首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A study of protein resistance of oligo(ethylene glycol) (OEG), HS(CH2)11(OCH2CH2)nOH (n = 2, 4, and 6), self-assembled monolayers (SAMs) on Au(111) surfaces is presented here. Hydroxyl-terminated OEG-SAMs are chosen to avoid the hydrophobic effect observed with methyl-terminated OEG-SAMs, particularly at high packing densities. The structure of the OEG-SAM surfaces is controlled by adjusting the assembly solvent. These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Protein adsorption on these surfaces was investigated by surface plasmon resonance (SPR). OEG-SAMs assembled from mixed ethanol and water solutions show higher packing density on gold than those from pure ethanol solution. For EG2OH- and EG4OH-SAMs, proteins (i.e., fibrinogen and lysozyme) adsorb more on the densely packed SAMs prepared from mixed ethanol and water solutions, while EG6OH-SAMs generally resist protein adsorption regardless of the assembly solvent used.  相似文献   

2.
The fouling resistance of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) of alkanethiolates on gold has been well established. Although hydration of the OEG chains seems key to OEG-SAM resistance to macromolecular adsorption and cellular attachment, the details of how hydration prevents biofouling have been inferred largely through computational methods. Because OEG-SAMs of different lengths exhibit differing degrees of fouling resistance, the interactions between water and OEG-SAMs leading to fouling resistance can be deduced by comparing the properties of fouling and nonfouling OEG-SAMs. While all OEG-SAMs had similar water contact angles, contact angles taken with glycerol were able to individuate between different OEG-SAMs and between fouling and nonfouling OEG-SAMs. Subsequent estimation of surface and interfacial tension using a colloidal model showed that nonfouling surfaces are associated with an increased negative interfacial tension between those OEG-SAMs that resisted attachment and water. Further analysis of this interfacial tension experimentally confirmed current mathematical models that cite OEG-water hydrogen-bond formation as a driving force behind short-term fouling resistance. Finally, we found a correlation between solid-water interfacial tension and packing density and molecular density of ethylene glycol.  相似文献   

3.
Molecular simulations were performed to investigate the origin of the strong repulsive force acting on a protein as the protein approaches an oligo (ethylene glycol) self-assembled monolayer (OEG-SAM) surface. Since the repulsive force is mainly generated from water molecules, the force from the water molecules near the surface was calculated layer by layer to further identify the molecular origin of the repulsive force. Results show that the strong repulsive force acting on the protein near the OEG-SAM surface is dominantly generated by the interfacial water molecules located between the OEG-SAM surface and lysozyme. A hydroxyl-terminated SAM (OH-SAM) surface was used for comparison. No significant repulsive force was observed from the water molecules between the protein and OH-SAM surface. Further studies show that the dipole distribution of the interfacial water molecules is significantly affected by the OEG-SAM surface, as opposed to the negligible impact from the OH-SAM surface. The interfacial water molecules above the OEG-SAM surface stay longer and reorient more slowly than those above the OH-SAM surface. These results from this work support the hypothesis that the OEG-SAM surface interacts strongly with interfacial water molecules and creates a stable hydration layer that prevents proteins from adsorbing to the surface.  相似文献   

4.
Resistance of mixed self-assembled monolayers (SAMs) with various counter-charged terminal groups of different valence and protonation/deprotonation states to nonspecific protein adsorption is investigated. It is demonstrated that excellent nonfouling surfaces can be readily constructed from mixed positively and negatively charged components of equal valence in a wide range of thiol solution compositions. Furthermore, the lattice structure of one of the mixed SAM systems studied is revealed by atomic force microscopy (AFM) to be (5.2 +/- 0.2 A x 5.2 +/- 0.2 A)60 degrees . Results indicate that the packing structure of mixed charged SAMs is determined by strong charge-charge interactions of the terminal groups rather than S-Au and chain-chain interactions. This work provides direct evidence that conformational flexibility is not required for protein resistance of a surface and even a single compact layer of charged groups of balanced charge with a crystalline structure can resist nonspecific protein adsorption, suggesting that tightly bound water molecules on the topmost part of the mixed SAMs play a dominant role in surface resistance to nonspecific protein adsorption.  相似文献   

5.
With the advantage of carbodiimide coupling chemistry, horse heart cytochrome c (cyt c) has been covalently immobilized onto self-assembled monolayers (SAMs) from 11-mercaptoundecanoic acid (MUDA) developed on single-crystal or polycrystalline gold substrate surfaces. The cyt c immobilized substrates thus prepared have been characterized by atomic force microscopy (AFM); we have succeeded in obtaining surface topographical images down to single-protein resolution. AFM imaging has also shown densely packed, uniform protein monolayer formation that is highly suggestive of self-assembly of cyt c molecules on MUDA SAMs. Covalent attachment of cyt c has been further evidenced by reflection-absorption FT-IR as well as microgravimetric analysis using a quartz crystal microbalance (QCM). In the latter, the specific MUDA and cyt c surface concentrations were determined to be 0.86 +/- 0.11 nmol cm-2 (n = 5) and 28 +/- 12 pmol cm-2 (n = 5), both of which agree fairly well with their theoretical counterparts. The obtained QCM chips having the cyt c/MUDA/Au interfacial structure were found to be capable of the direct electrochemistry of the surface-attached cyt c molecules. Cyclic voltammetric measurements on the chips gave particular redox waves showing characteristics of surface process. The electroactive protein surface concentration was determined to be 7.2 +/- 4.8 pmol cm-2 (n = 6); it was almost consistent with values found in literature, while it was limited to 26% in magnitude for the QCM data. This was deemed to have arisen from the orientation variation of the surface-confined cyt c molecules and is discussed briefly.  相似文献   

6.
The molecular interaction force of the intermonolayer hydrogen bonding between phenylurea groups on a probe tip and carboxyl groups in self-assembled monolayers was measured directly by means of atomic force microscopy in ethanol. Gold-coated AFM probe tips were modified chemically with 2-(N'-phenylureido)ethanethiol possessing a terminal urea moiety, which is a well-known powerful functionality for forming stable hydrogen bondings with neutral and anionic species. Adhesion force measurements were carried out on gold substrates coated with a COOH-terminated SAM composed of 6-mercaptohexanoic acid in ethanol using the phenylurea-functionalized probe tip. The adhesion force observed was decreased in the presence of H2PO4(-) in the measurement bath, indicating that the intermonolayer hydrogen bonding between the phenylurea moieties and carboxyl groups attached covalently to the probe tip and substrate, respectively, is suppressed by the anion added to the measurement solution. The specific hydrogen-bonding force was measured on binary mixed SAMs prepared by mixing 6-mercaptohexanoic acid with 1-hexanethiol. The individual hydrogen-bonding force between the phenylurea-modified tip and the binary mixed SAMs with various fractions of MHA was evaluated by repetitive force measurements and their statistical analyses by an autocorrelation method. We discuss the effect of diluting the COOH-terminated component in the mixed SAM on the adhesion force and the single force between the phenylurea and carboxyl groups in terms of competition between intermonolayer and intramonolayer hydrogen bonding.  相似文献   

7.
Adsorption of glucose oxidase (GOD) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical measurements. The PPF surface is very flat (less than 1-nm roughness), and its properties (charge and wettability) can be easily changed while retaining the backbone structure. We focused on three types of surfaces: (1) the pristine surface of hexamethyldisiloxane (HMDS) PPF (hydrophobic and neutral surface), (2) an HMDS PPF surface with nitrogen-plasma treatment (hydrophilic and positive-charged surface), and (3) an HMDS PPF surface treated with oxygen plasma (hydrophilic and negative-charged surface). The AFM image showed that the GOD molecules were densely adsorbed onto surface 2 and that individual GOD molecules could be observed. The longer axis of GOD ellipsoid molecules were aligned parallel to the surface, called the "lying position", because of electrostatic association. On surface 1, clusters of GOD molecules did not completely cover the original PPF surface (surface coverage was ca. 60%). The 10-nm-size step height between the GOD clusters and the PPF surface suggests that the longer axes of individual GOD molecules were aligned perpendicular to the surface, called the "standing position". On surface 3, only a few of the GOD molecules were adsorbed because of electrostatic repulsion. These results indicate that the plasma polymerization process can facilitate enhancement or reduction of protein adsorption. The AFM images show a corresponding tendency with the QCM profiles. The QCM data indicate that the adsorption behavior obeys the Langmuir isotherm equation. The amperometric biosensor characteristics of the GOD-adsorbed PPF on a platinum electrode showed an increment in the current because of enzymatic reaction with glucose addition, indicating that enzyme activity was mostly retained in spite of irreversible adsorption.  相似文献   

8.
Electrical and mechanical properties of metal-molecule-metal junctions formed between Au-supported self-assembled monolayers (SAMs) of electroactive 11-ferrocenylundecanethiol (FcC(11)SH) and a Pt-coated atomic force microscope (AFM) tip have been measured using a conducting probe (CP) AFM in insulating alkane solution. Simultaneous and independent measurements of currents and bias-dependent adhesion forces under different applied tip biases between the conductive AFM probe and the FcC(11)SH SAMs revealed reversible peak-shaped current-voltage (I-V) characteristics and correlated maxima in the potential-dependent adhesion force. Trapped positive charges in the molecular junction correlate with high conduction in a feature showing negative differential resistance. Similar measurements on an electropassive 1-octanethiol SAM did not show any peaks in either adhesion force or I-V curves. A mechanism involving two-step resonant hole transfer through the occupied molecular orbitals (MOs) of ferrocene end groups via sequential oxidation and subsequent reduction, where a hole is trapped by the phonon relaxation, is proposed to explain the observed current-force correlation. These results suggest a new approach to probe charge-transfer involving electroactive groups on the nanoscale by measuring the adhesion forces as a function of applied bias in an electrolyte-free environment.  相似文献   

9.
Glucose oxidase (GOx) has been attached covalently to form uniform enzyme monolayers on self-assembled monolayers (SAMs) from 11-aminoundecanethiol (AUDT) by taking advantage of chemical oxidation of GOx carbohydrate residues followed by coupling the resulting 'aldehydic' enzyme with the terminal amino group in the SAM as characterized by AFM imaging, IR, QCM, and electrochemical measurements.  相似文献   

10.
To better understand surface forces across polymer melts, we measured the force between two chemically well-defined solid surfaces in a melt of polymer chains with a functional end group. As for surfaces, we used self-assembed monolayers (SAMs) of alkyl thiols with different end groups (methyl, amino, and hydroxyl) on gold. The polymer was a hydroxyl-terminated polyisoprene. To measure the force, an atomic force microscope was used. Between methyl-terminated SAMs, a weak and short-range repulsion was detected. Between hydroxyl or amino-terminated SAMs, a strong and long-range repulsion was observed up to distances of 16 nm. This indicates that the hydroxyl group of the polymer binds to the hydroxyl or amino groups of the SAMs. It forms a brush-like structure, which leads to steric repulsion. On amino-terminated SAMs, force-versus-distance curves on approach and retraction were monotonically repulsive and reversible. With hydroxyl-terminated SAMs, a jump was observed on approach when the load exceeded a certain threshold. On retraction, an adhesion had to be overcome. We interpret the jump as a rupture of the polymer layer. It indicates that the kinetics of bond and brush formation is faster on OH-SAMs than on NH2-SAMs.  相似文献   

11.
The reversible desorption and adsorption of ethanethiol (ET) and hexadecane thiol (HDT) self-assembled monolayers (SAMs) on gold substrates are addressed with potential-dependent AFM force measurements where both tip and substrate potentials are controlled independently. For HDT-modified tip and substrate, the potential dependence of the force curve corresponds to the observed voltammetric features. The adhesion interaction between HDT-modified tip and substrate exhibits a large adhesion, whereas the adhesion is reduced to one-quarter of its original value after HDT on the substrate is removed. The presence of both attractive features on the approach curve and large adhesion on retraction after thiol desorption are ascribed to micelle formation from the desorbed, insoluble, thiols above the Au surface. For the ET-modified tip and substrate, the force curve evinces time-dependent recovery after the thiol adsorption peak which arises from the finite time of diffusion of the desorbed thiol back to the substrate. However, the force curves exhibit little potential dependence when the ET-desorbed tip is interacted with ET-modified substrate.  相似文献   

12.
Besides significantly broadening the scope of available data on adhesion of proteins on solid substrates, we demonstrate for the first time that all seven proteins (tested here) behave similarly with respect to adhesion exhibiting a step increase in adhesion as wettability of the solid substrate decreases. Also, quantitative measures of like-protein-protein and like-self-assembled-monolayer (SAM)-SAM adhesive energies are provided. New correlations, not previously reported, suggest that the helix and random content (as measures of secondary structure) normalized by the molecular weight of a protein are significant for predicting protein adhesion and are likely related to protein stability at interfaces. Atomic force microscopy (AFM) was used to directly measure the normalized adhesion or pull-off forces between a set of seven globular proteins and a series of eight well-defined model surfaces (SAMs), between like-SAM-immobilized surfaces and between like-protein-immobilized surfaces in phosphate buffer solution (pH 7.4). Normalized force-distance curves between SAMs (alkanethiolates deposited on gold terminated with functional uncharged groups -CH3, -OPh, -CF3, -CN, -OCH3, -OH, -CONH2, and -EG3OH) covalently attached to an AFM cantilever tip modified with a sphere and covalently immobilized proteins (ribonuclease A, lysozyme, bovine serum albumin, immunoglobulin, gamma-globulins, pyruvate kinase, and fibrinogen) clearly illustrate the differences in adhesion between these surfaces and proteins. The adhesion of proteins with uncharged SAMs showed a general "step" dependence on the wettability of the surface as determined by the water contact angle under cyclooctane (thetaco). Thus, for SAMs with thetaco < approximately 66 degrees, (-OH, -CONH2, and -EG3OH), weak adhesion was observed (>-4 +/- 1 mN/m), while for approximately 66 < thetaco < approximately 104 degrees, (-CH3, -OPh, -CF3, -CN, -OCH3), strong adhesion was observed (< or =8 +/- 3 mN/m) that increases (more negative) with the molecular weight of the protein. Large proteins (170-340 kDa), in contrast to small proteins (14 kDa), exhibit characteristic stepwise decompression curves extending to large separation distances (hundreds of nanometers). With respect to like-SAM surfaces, there exists a very strong adhesive (attractive) interaction between the apolar SAM surfaces and weak interactive energy between the polar SAM surfaces. Because the polar surfaces can form hydrogen bonds with water molecules and the apolar surfaces cannot, these measurements provide a quantitative measure of the so-called mean hydrophobic interaction (approximately -206 +/- 8 mN/m) in phosphate-buffered saline at 296 +/- 1 K. Regarding protein-protein interactions, small globular proteins (lysozyme and ribonuclease A) have the least self-adhesion force, indicating robust conformation of the proteins on the surface. Intermediate to large proteins (BSA and pyruvate kinase-tetramer) show measurable adhesion and suggest unfolding (mechanical denaturation) during retraction of the protein-covered substrate from the protein-covered AFM tip. Fibrinogen shows the greatest adhesion of 20.4 +/- 2 mN/m. Unexpectedly, immunoglobulin G (IgG) and gamma-globulins exhibited very little adhesion for intermediate size proteins. However, using a new composite index, n (the product of the percent helix plus random content times relative molecular weight as a fraction of the largest protein in the set, Fib), to correlate the normalized adhesion force, IgG and gamma-globulins do not behave abnormally as a result of their relatively low helix and random (or high sheet) content.  相似文献   

13.
The interfacial properties at well-ordered short-chain alkanethiol monolayer-aqueous interfaces are probed to understand the water structure near a hydrophobic surface. Monolayers of hexanethiol on highly oriented gold substrates have been prepared by various methods such as adsorption from alcoholic solution of the thiol, adsorption from neat thiol, and potential-controlled adsorption. The compactness and crystallinity of the monolayer have been probed using reflection-absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical techniques. The presence of a thin layer of solvent with reduced density/dielectric constant (termed "drying transition") close to the methyl groups is identified. This is based on reduced interfacial capacitance observed in the presence of an aqueous electrolyte solution as compared to the expected value for a well-ordered monolayer-aqueous interface. Atomic force microscopy allows the determination of the variation in the dielectric constant of the solvent medium as a function of distance from the monolayer head group. The thickness of the transition layer (interphase) is found to be approximately 2 nm. The phenomenon of drying transition is not unique to water; preliminary studies indicate that formamide, which has a two-dimensional hydrogen-bonded network, shows similar characteristics.  相似文献   

14.
The importance of protein adsorption on biomaterials is widely recognized, but the dependence of the adsorption results on the chosen technique has not been much addressed. The objective of this work is to compare adsorption data obtained using several techniques under experimental conditions as closely as possible. Two case studies were investigated: adsorption of bovine serum albumin (BSA) onto 316L stainless steel (SS) and onto alumina. Both materials were used as powders and plates, whose characterization was done through zeta potential (ZP) measurements. The experimental techniques were depletion, protein radiolabeling, quartz crystal microbalance with dissipation (QCM‐D) and atomic force microscopy (AFM). The adsorption isotherms obtained with depletion and QCM‐D techniques, although quantitatively different, present some similarities in shape. Both techniques suggest the existence of a compact end‐on monolayer of protein on the SS surface, while on the alumina surface a less dense side‐on monolayer is formed at lower BSA concentration, followed by a second layer at higher concentration. AFM topographical characterization of the protein films adsorbed on both materials confirms those findings. Further use of AFM in determining the thickness of the film adsorbed on SS yielded values in good agreement with the QDM‐D results. Different surface charges measured on powders and plates do not seem to affect adsorption. Protein radiolabeling seems to be the least reliable technique because it yields, for both materials, adsorption values higher than those from the other techniques. In the case of SS, the difference amounts to one order of magnitude. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We have explored interfacial electrochemical electron transfer (ET) and electrocatalysis of 5–6 nm Prussian Blue nanoparticles (PBNPs) immobilized on Au(111)-electrode surfaces via molecular wiring with variable-length, and differently functionalized thiol-based self-assembled molecular monolayers (SAMs). The SAMs contain positively (?NH3 +) or negatively charged (–COO–) terminal group, as well an electrostatically neutral hydrophobic terminal group (–CH3). The surface microscopic structures of the immobilized PBNPs were characterized by high-resolution atomic force microscopy (AFM) directly in aqueous electrolyte solution under the same conditions as for electrochemical measurements. The PBNPs displayed fast and reversible interfacial ET on all the surfaces, notably in multi-ET steps as reflected in narrow voltammetric peaks. The ET kinetics can be controlled by adjusting the length of the SAM forming linker molecules. The interfacial ET rate constants were found to depend exponentially on the ET distance for distances longer than a few methylene groups in the chain, with decay factors (β) of 0.9, 1.1, and 1.3 per CH2, for SAMs terminated by ?NH3 +,–COO–, and–CH3, respectively. This feature suggests, first that the interfacial ET processes follow a tunneling mechanism, resembling that of metalloproteins in a similar assembly. Secondly, the electronic contact of the SAM terminal groups that anchor non-covalently the PBNP are crucial as reported for other types of molecular junctions. Highly efficient PBNP electrocatalysis of H2O2 reduction was also observed for the three linker groups, and the electrocatalytic mechanisms analyzed.  相似文献   

16.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

17.
Time-resolved adsorption behavior of a human immunoglobin G (hIgG) protein on a hydrophobized gold surface is investigated using multitechniques: quartz crystal microbalance/dissipation (QCM-D) technique; combined surface plasmon resonance (SPR) and Love mode surface acoustic wave (SAW) technique; combined QCM-D and atomic force microscopy (AFM) technique. The adsorbed hIgG forms interfacial structures varying in organization from a submonolayer to a multilayer. An "end-on" IgG orientation in the monolayer film, associated with the surface coverage results, does not corroborate with the effective protein thickness determined from SPR/SAW measurements. This inconsistence is interpreted by a deformation effect induced by conformation change. This conformation change is confirmed by QCM-D measurement. Combined SPR/SAW measurements suggest that the adsorbed protein barely contains water after extended contact with the hydrophobic surface. This limited interfacial hydration also contributed to a continuous conformation change in the adsorbed protein layer. The viscoelastic variation associated with interfacial conformation changes induces about 1.5 times overestimation of the mass uptake in the QCM-D measurements. The merit of combined multitechnique measurements is demonstrated.  相似文献   

18.
This study presents a method to measure the contact angles of oils on a substrate in water. Diiodomethane and perfluorodecalin were used as model oils. Self-assembled monolayers (SAMs) were prepared by adjusting the mole ratio of CH 3- and OH-terminated alkanethiols. The contact angles of the two oils in water increased with increasing hydrophilicity of the SAMs, and the results are contrasted with the contact angles of oils on these surfaces in air. In addition, perfluorodecalin showed higher contact angles than diiodomethane on the same surface. On the poly(N-isopropylacrylamide) (PNiPAAM) monolayer surface, the contact angles of the two oils in water decreased sharply at the transition temperature of PNiPAAM (approximately 30 degrees C), but the surface retained fairly high hydrophilicity even after the transition. The above results are correlated with atomic force microscopy (AFM) measurements of the adhesion force between protein-immobilized AFM tips (human fibrinogen and bovine serum albumin) and these monolayers.  相似文献   

19.
We used chemical force microscopy (CFM) to study adhesive forces between surfaces of epoxy resin and self-assembled monolayers (SAMs) capable of hydrogen bonding to different extents. The influence of the liquid medium in which the experiments were carried out was also examined systematically. The molecular character of the tip, polymer, and liquid all influenced the adhesion. Complementary macroscopic contact angle measurements were used to assist in the quantitative interpretation of the CFM data. A direct correlation between surface free energy and adhesion forces was observed in mixed alcohol-water solvents. An increase in surface energy from 2 to 50 mJ/m(2) resulted in an increase in adhesion from 4-8 nN to 150-300 nN for tips with radii of 50-150 nm. The interfacial surface energy for identical nonpolar surface groups of SAMs was found not to exceed 2 mJ/m(2). An analysis of adhesion data suggests that the solvent was fully excluded from the zone of contact between functional groups on the tip and sample. With a nonpolar SAM, the force of adhesion increased monotonically in mixed solvents of higher water content; whereas, with a polar SAM (one having a hydrogen bonding component), higher water content led to decreased adhesion. The intermolecular force components theory was used for the interpretation of adhesion force measurements in polar solvents. Competition between hydrogen bonding within the solvent and hydrogen bonding of surface groups and the solvent was shown to provide the main contribution to adhesion forces. We demonstrate how the trends in the magnitude of the adhesion forces for chemically heterogeneous systems (solvents and surfaces) measured with CFM can be quantitatively rationalized using the surface tension components approach. For epoxy polymer, inelastic deformations also contributed heavily to measured adhesion forces.  相似文献   

20.
A set of oligo(ethylene glycol)-terminated and globotriose-terminated self-assembled monolayers (SAMs) has been prepared on gold substrates. Such model surfaces are well defined and have good stability due to the strong binding of thiols and disulfides to the gold substrate. They are thus very suitable for addressing questions related to effects of surface composition on wetting properties, surface interactions, and surfactant adsorption. These issues are addressed in this report. Accurate wetting tension measurements have been performed as a function of temperature using the Wilhelmy plate technique. The results show that the nonpolar character of oligo(ethylene glycol)-terminated SAMs increases slightly but significantly with temperature in the range 20-55 degrees C. On the other hand, globotriose-terminated SAMs are fully wetted by water at room temperature. Surface forces measurements have been performed and demonstrated that the interactions between oligo(ethylene glycol)-terminated SAMs are purely repulsive and similar to those determined between adsorbed surfactant layers with the same terminal headgroup. On the other hand, the interactions between globotriose-terminated SAMs include a short-range attractive force component that is strongly affected by the packing density in the layer. In some cases it is found that the attractive force component increases with contact time. Both these observations are rationalized by an orientation- and conformation-dependent interaction between globotriose headgroups, and it is suggested that hydrogen-bond formation, directly or via bridging water molecules, is the molecular origin of these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号