首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of new RP stationary phases containing polar groups has provided the chromatographer with a variety of stationary phase choices with differing selectivities. Polar endcapped and polar embedded group stationary phases have found use in solving a wide variety of separation problems, especially for the efficient separation of organic bases as well as separations necessitating the use of highly aqueous mobile phases. In this report, the retention thermodynamics of small, nonpolar solutes on traditional alkyl, polar endcapped, and polar embedded group stationary phases are compared. It is found that the nonpolar (methylene) transfer enthalpy is less favorable when polar embedded group phases are used, when compared to traditional or polar endcapped phases. In contrast, the transfer enthalpy of a phenyl group is found to be more favorable when a polar endcapped phase is used. In addition, the retention characteristics of these phases are compared using a set of solutes with differing solvatochromic parameters. Hydrogen-bond acids appear to have enhanced retention on polar embedded group phases, while hydrogen-bond bases have enhanced retention on polar endcapped phases.  相似文献   

2.
冠醚键合固定相主要用于一些无机离子的分离,我们用连续固液相法合成了一系列冠醚键合硅胶固定相,并成功地用于有机化合物的分离[1~4];β-CD的内腔疏水而外缘亲水,可以选择性地包结含苯环及萘环的化合物,且具有手性拆分能力,已被用于手性色谱固定相[5,...  相似文献   

3.
Improved separations of the isomers of olefinic aliphatic insect pheromones were obtained on cholesteryl cinnamate glass capillary columns by operating in the supercooled temperature range of the liquid crystal. Capillary columns were prepared with varying film thickness of the stationary phase; choice of the correct film thickness ensured optimum retention for a wide range of compounds within the most effective temperature range of the liquid crystal. The deactivation procedures described made the liquid crystal columns suitable for separation of the geometric isomers of polar and nonpolar compounds.  相似文献   

4.
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds.  相似文献   

5.
Microporous organic polymers (MOPs) have emerged as a new class of functional porous materials with unique characteristics and potential uses in diverse areas. However, the field of MOPs for gas chromatographic (GC) separations has not been well explored. Herein, a MOP namely KAPs-1 was dynamic coated onto a capillary column for the first time. The fabricated column exhibited a nonpolar nature and the column efficiency for n-dodecane was up to 7769 plates m−1. The KAPs-1 coated column showed high GC separation performance for a series of volatile organic compounds (VOCs) including the challenging ethylbenzene and xylene isomers, which could not be resolved at baseline on the commercial 5% phenyl polysiloxane stationary phase. Moreover, the relative standard deviations for five replicate determinations of the studied analytes were 0.0–0.6%, 0.9–3.2%, 1.1–5.9%, 0.8–3.7% for retention time, peak area, peak height and peak width, respectively. To investigate the interaction between some analytes and the stationary phase, thermodynamic and kinetic parameters were also evaluated. The results of this study show it is very promising to utilize MOPs as stationary phases for capillary GC.  相似文献   

6.
Coupling normal-phase LC separation methods to atmospheric pressure ionization (API)-mass spectrometry (MS) for detection can be problematic because of the possible detonation hazard and because nonpolar solvents do not support ionization of the analyte. Unlike achiral separations, enantiomeric separations can be very sensitive to small changes in the separation environment. Thus, completely substituting the main mobile phase component of a normal-phase LC solvent for an environmentally friendly, nonflammable fluorocarbon-ether as a safe and effective solvent must be thoroughly evaluated before it can be recommended for enantioselective separations with API-MS detection. Ethoxynonafluorobutane (ENFB) was used as a normal-phase solvent for the enantioselective separation of 15 compounds on two macrocyclic glycopeptide chiral stationary phases (CSPs) and a new polymeric chiral stationary phase. The chromatographic figures of merit were compared between results obtained with the ENFB mobile phases and traditional heptane-based mobile phases. In addition, the limits of detection (LOD) using the API-MS compatible ENFB were examined, as well as flow rate sensitivities and compatibilities with common polar organic modifier. ENFB is a safe and effective solvent for enantioselective normal-phase/API-MS analyses.  相似文献   

7.
Infinite-dilution gas–liquid chromatographic activity coefficients at 393.15 K (with their thermal and athermal components) and derived excess partial molar Gibbs energies, enthalpies, and entropies have been determined for each of 33 solutes of different polarity on four stationary phases with cyano groups, using retention data taken from the literature. The strongest interactions predicted by the solvation model are the dipolarity/polarizability, the acidic solute–basic stationary phase interaction, and nonpolar cavity formation and dispersion. These interactions were compared with those evaluated from the solute activity coefficients; the effect of the solute connectivity index and dipole moment on nonpolar and polar interactions, respectively, is discussed. The dependence of the thermal activity coefficient on nonpolar interactions, and the influence of stationary phase polarity on the four solute–stationary phase interactions, were evaluated. The nonpolar interaction increases with increasing connectivity and with increasing athermal activity coefficient. The dipolarity/polarizability interaction increases with increasing solute dipole moment. Finally, polar interactions increase with increasing stationary phase polarity whereas the nonpolar interaction is independent of stationary phase polarity.  相似文献   

8.
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed‐phase high‐performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high‐performance liquid chromatography  相似文献   

9.
A series of commercial monomeric and polymeric C(18), C(27), and C(30) stationary phases were compared with immobilized poly(ethylene-co-acrylic acid) stationary phases synthesized in-house. The columns were characterized on the basis of methylene selectivity, silanol activity, metal activity, pore size, shape selectivity, and the ability to separate tocopherol isomers and carotenoid isomers. Monomeric and polymeric C(30) phases were shown to yield excellent separations of the tocopherol isomers while the polymeric C(30) and polyethylene phases were more appropriate to the separation of carotenoids.  相似文献   

10.
Unusual effects of separation conditions on chiral separations   总被引:4,自引:0,他引:4  
Unusual effects in liquid chromatographic separations of enantiomers on chiral stationary phases are reviewed with emphasis on polysaccharide phases. On protein phases and Pirkle phases reversal of the elution order between enantiomers due to variation of temperature and mobile phase composition has been reported. Most of the nonanticipated observations have dealt with the widely used polysaccharide phases. Reversed retention order and other stereoselective effects have been observed by variation of temperature, organic modifier and water content in nonpolar organic mobile phases.  相似文献   

11.
合成了一种新型的双苯甲酰胺冠醚固定相:(1S,2S)-1-(对苯甲酰胺基)苯基-2-苯甲酰胺基-16-冠-5,其结构经红外光谱、核磁共振、质谱及元素分析数据证实。考察了这种固定相的柱效、热稳定性、极性及选择性等色谱特性。该类固定相对极性位置异构体分离效果良好。由于冠醚上引入苯甲酰胺取代基,因而对苯胺类及不经衍生化的碱性化合物能特殊选择性地分离。  相似文献   

12.
A newly developed side chain liquid crystal polysiloxane has been investigated as a stationary phase for the isomer-specific analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans substituted at positions 2, 3, 7, and 8. The retention times from the chromatograms of a standard solution containing all PCDD and PCDF isomers were compared with those from solutions containing only those tetra- to octa-chlorinated compounds substituted at positions 2, 3, 7, and 8. In general, PCDDs substituted at positions 2, 3, 7, and 8 eluted later than most other isomers of the same congener group. The separations obtained on this stationary phase were compared with those obtained elsewhere using a commercially available product.  相似文献   

13.
Preparative-grade bonded β- and γ-cyclodextrin stationary phases were used as the packing material of liquid chromato-graphic analytical microcolumns. Although the resulting columns are characterized by relatively low efficiency, the high selectivity of the cyclodextrin phases nevertheless allows their successful use for the separation of different classes of isomeric compounds that are difficult to resolve on conventional LC stationary phases. Examples of baseline (or almost baseline) separations of a number of isomeric compounds, including isomeric polycyclic aromatic hydrocarbons, are presented to demonstrate the analytical potential of such columns. Retention behavior of the separated isomers is discussed based on the structure of the solute molecule and the possibility of its inclusion into the molecular cavity of cyclodextrin stationary phases.  相似文献   

14.
The seeming “dual nature” of ionic liquids (ILs) for separating both apolar and polar compounds suggests that ILs may have a great potential for complex samples like essential oils from herbal plants that contain a great variety of compounds. In the present work, a geminal dicationic IL, 1,9-di(3-vinylimidazolium)nonane bis[(trifluoromethyl)sulfonyl]imidate, was investigated for this purpose. To find the best way to achieve satisfactory separations simultaneously for the compounds in essential oils, the dicationic IL was used as the stationary phase for capillary gas chromatography (GC) in two ways, either in its pure state or as a mixed stationary phase with monocationic ILs and a polysiloxane diluent. Interestingly, it was found that the mixed stationary phase exhibited a much better selectivity for polar and nonpolar compounds than either the dicationic IL or the polysiloxane, suggesting that a kind of synergistic effect occurred when these stationary phases were combined in the way described. A comparison with two commercial stationary phases (polar and nonpolar) indicated that this novel mixed stationary phase behaved in a way closer to a polar stationary phase in terms of selectivity and elution order. The present work demonstrates that the mixed stationary phase is efficient and selective and can be an alternative choice for the GC analysis of samples of complex composition. Figure Divinyldiimidazolium-based ionic liquid stationary phase  相似文献   

15.
Azulene is an aromatic molecule with interesting properties, most notably a permanent dipole moment of 1.08D. This degree of polarity in the absence of heteroatoms is quite rare and offers potential for use in unique gas chromatographic stationary phases. Here, we report the first examples of azulene-derivatized stationary phases for gas chromatographic separations. Poly(dimethyl/azulenylmethyl) siloxane polymers containing 15 and 35% of an azulene derivative were synthesized, coated on capillary columns, and evaluated. To compare the effects of increased polarity vs. the effects of polarizability, isomeric naphthalene analogues were also prepared, coated, and evaluated. The coated phases displayed efficiencies up to 2700 plates/m. For both azulene and naphthalene columns, retention increased as substitution level increased. The more polarizable naphthalene columns tended to retain analytes more strongly. Columns were also evaluated for the separation of several different mixtures of isomers against a commercial HP-5 column. All azulene and naphthalene columns exhibited separations comparable to the commercial column. The solvation thermodynamic parameters phases were measured, showing an excellent linear relationship and no change in the mechanism of interaction over the temperature range measured.  相似文献   

16.
With recent advances in column technology it is now possible to prepare highly efficient, very inert, and thermally stable capillary columns coated with nonpolar polysiloxane stationary phases. Unfortunately, the same degree of success has not been achieved for some of the more polar polysiloxane phases. A parameter that has been studied little in the past in relation to stationary phase film stability is the viscosity of the stationary phase. In this paper the efficiency and stability of coated columns are correlated to the viscosity of the phase. Due to their structure, the viscosity of the phenyl-containing polysiloxanes change rapidly with temperature and hence, thin-film coatings are not stable at elevated temperatures. By using high viscosity phenyl-containing methylphenylpolysiloxanes which were recently synthesized, efficient and stable columns have been prepared.  相似文献   

17.
This work reports the investigation of a new triptycene-derived oxacalixarene(TDOC) as the stationary phase for gas chromatography(GC) with high-resolution performance for a wide range of analytes and isomers.The TDOC scaffold is composed of triptycene and 1,8-naphthyridine moieties,inherently differing from the conventional calixarenes in structures and properties.As a result,the TDOC column exhibited outstanding column efficiency of 5679 plates/m by n-dodecane at 120℃.It showed advantageous performance for separations of the mixtures with various analytes and achieved high resolution of diverse isomers(skeletal,positional and cis-/trans-isomers) from apolar to polar nature.Moreover,the TDOC column exhibited high thermal stability up to 310℃.To date,the TDOC-based materials have not been reported in chromatography.This work demonstrates the good potential of the triptycene-derived heterocalixarenes as a new class of stationary phases for chromatographic analyses.  相似文献   

18.
Abstract

Liquid crystalline side group polymers support coated on silica gels have been applied as stationary phases in high performance liquid chromatography. It has been possible to show that also in liquid chromatography, separations based on the mesophase structure can be observed in analogy to gas chromatography. From results of separations in which temperature, flow rate, sample concentration and the solvent strength of the mobile phase were varied, this work derives views on the fundamental mechanisms involved. In addition, it will be shown that different mechanisms are probably involved in the separation of steroids and dinitrobenzene isomers on these stationary phases.  相似文献   

19.
An octadecyl-sulfonated silica (ODSS) stationary phase specially designed for performing capillary electrochromatography (CEC) at relatively strong electroosmotic flow (EOF) proved useful for the separations of some nucleosides and bases. The ODSS stationary phase is composed of a hydrophilic, negatively charged sublayer to which a nonpolar top layer containing octadecyl ligands is covalently attached. The charged sublayer contains sulfonic acid groups which ensure a relatively strong EOF. Due to the presence of permanently charged sulfonic acid groups in the sublayer, the hydrophilic nature of the sublayer and the hydrophobic character of the top octadecyl layer, retention and selectivity of charged and relatively polar nucleosides and bases on the ODSS stationary phase are based on electrostatic interaction, hydrophilic interaction, and reversed-phase mechanisms. This yielded for the ODSS stationary phase a unique selectivity towards the nucleosides and bases, thus allowing their rapid separation. To gain insight into the chromatographic behavior of nucleosides and bases on the ODSS stationary phase, the results were compared to those obtained on an octadecyl-silica (ODS) capillary under otherwise the same elution conditions. Due to the difference in the nature of the organic layers on the surface of the ODSS and ODS stationary phases, the elution order on both stationary phases differed significantly, and the ODSS capillary proved more suitable for the separation of the nucleosides and bases than the ODS capillary.  相似文献   

20.
Two novel silica hydride‐based fluorinated bonded phases have been synthesized using a hydrosilation procedure to test combined fluorine and hydride selectivity. The bonded moieties were characterized by elemental and spectral analysis. Chromatographic testing was done using hydrophilic analytes in the aqueous normal phase mode. At higher amounts of the nonpolar solvent in the mobile phase, there should be increased retention for solutes such as acids, bases and other polar compounds, whereas nonpolar solutes can be retained when water is increased as in RP chromatography. The synergistic effects of the fluorinated phase selectivity and aqueous normal phase retention on a hydride surface have been explored for small polar molecules. The stability and repeatability of the hydride‐based fluorinated stationary phases were evaluated. The use of acetone as the organic component in the mobile phase was also tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号