首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H-->NH and NH+H-->NH(2) over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (DeltaE(H)) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by DeltaE(H), and that the strength of N (NH) chemisorption energy is of less importance. DeltaE(H) has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E(a)) across the transition series. When this effect is quantified a very good linear correlation is found with E(a). In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond.  相似文献   

2.
Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.  相似文献   

3.
Silicon clusters mixed with a transition metal atom, MSin, were generated by a double-laser vaporization method, and the electronic and geometric stabilities for the resulting clusters with transition metal encapsulated by silicon were examined experimentally. By means of a systematic doping with transition metal atoms of groups 3, 4, and 5 (M = Sc, Y, Lu, Ti, Zr, Hf, V, Nb, and Ta), followed by changes of charge states, we explored the use of an electronic closing of a silicon caged cluster and variations in its cavity size to facilitate metal-atom encapsulation. Results obtained by mass spectrometry, anion photoelectron spectroscopy, and adsorption reactivity toward H2O show that the neutral cluster doped with a group 4 atom features an electronic and a geometric closing at n = 16. The MSi(16) cluster with a group 4 atom undergoes an electronic change in (i) the number of valence electrons when the metal atom is substituted by the neighboring metals with a group 3 or 5 atom and in (ii) atomic radii with the substitution of the same group elements of Zr and Hf. The reactivity of a halogen atom with the MSi(16) clusters reveals that VSi(16)F forms a superatom complex with ionic bonding.  相似文献   

4.
Modifying solid surfaces with aryl groups has many potential applications. Using first principles density functional theory methods, we investigated the trend of the structure and bonding of the phenyl group (C6H5, the simplest aryl group) on selected transition metals across the periodic table. We found that the bond between C6H5 and metal surfaces is chemical in nature. Decreasing bond strength is found from left to right, concurrent with a switching of the preferred orientation for C6H5 from the flat-lying configuration to the upright configuration. This switching is attributed to the increasing of d-electrons; that is, early transition metals, lacking d-electrons, favor the carbon-metal pi-bond and therefore the flat-lying configuration, while late transition metals rich in d-electrons prefer the carbon-metal sigma-bond and thus the upright fashion. C6H5 is also found to undergo beta-dehydrogenation on early transition metals. This work invites further theoretical and experimental research on the aryl-solid interface.  相似文献   

5.
The gas-phase reactions with propargyl alcohol (PPA) of all the singly charged ions of the first-row transition metals, generated by laser ablation in an external ion source, were studied by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS.). The reactivities of the metal ions change irregularly across the periodic table, and the reactivity of each ion is a function of its electronic configuration and corresponding metal-oxygen (M-O) bond energies. The 10 metal ions were classified into three categories according to their reactivities: Sc(+), Ti(+) and V(+) are the most reactive ions which react with PPA to give many kinds of oxygen-rich products due to stronger M-O bonds; Fe(+), Co(+) and Ni(+) are less reactive; Cr(+), Mn(+), Cu(+) and Zn(+) are the most unreactive ions, due to the half and completely occupied valence electronic configurations. The order of reactivity is Ti(+) > V(+) > Sc(+) > Co(+) > Fe(+) approximately Ni(+) > Zn(+) > Cr(+) approximately Mn(+) approximately Cu(+).  相似文献   

6.
CO oxidation on Ru(0001), Rh(111), Pd(111), Os(0001), Ir(111), Pt(111), and their corresponding metal oxides is studied using density functional theory. It is found that (i) the reactivity of metal oxide is generally higher than that of the corresponding metal, and (ii) on both metals and metal oxides, the higher the chemisorption energy is in the initial state, the larger the reaction barrier. The barriers are further analyzed by decomposing them into electronic and geometric effects, and the higher reactivity of metal oxides is attributed mainly to the surface geometric effect. Moreover, the electronic effect on both metals and metal oxides follows the same pattern: the shorter the OC-O bond distance in the TS, the higher the barrier.  相似文献   

7.
The electronic structure of group 6-8 transition metal (TM) nitrido derivatives [PW(11)O(39){TM(VI)N}](4-) is studied computationally and the potential reactivity of the polyoxoanions is discussed. The observed electrophilic reactivity for the Ru(VI) nitrido derivative is rationalized from frontier molecular orbital analysis. When we move to the left or down in the periodic table (TM = Os, Tc, Re, Mo and W) the electrophilic character of the polyoxometalate decreases or the cluster should be better regarded as a nucleophile. The DFT analysis of the redox properties suggests that the still unknown high-valent Mn(VI)N and Fe(VI)N units could be stabilized by the porphyrin-like ligand [PW(11)O(39)](7-) and their electronic structure indicates that these anions should have a high potential reactivity towards nucleophiles.  相似文献   

8.
The potential energy surfaces of the initial reactions of ethylene polymerization with the Ziegler–Natta catalysis related to the constrained geometric catalysts (CGCs) were studied by the B3LYP density functional method. Three metals (Ti, Zr, and Hf) in the Ziegler–Natta catalysis and eight bridging groups (BH, CH2, NH, O, AlH, SiH2, PH, and S) between cyclopentadienyl (Cp) and NH ligands were treated. The reaction occurs through two steps as that of Kaminsky type: the first step produces the complex without a barrier and the second is the insertion of ethylene into the metal–carbon bond through the transition state. The complex formation energy for each metal system correlates linearly to the electronegativity of the bridging atom for each row atom of the periodic table except for those of the BH-bridging systems. The energies of the reactions for the BH-bridging systems could be explained with the through-bond model as the reactions of ansa-metallocenes and the π back-donation of BN double bond.  相似文献   

9.
The chemistry of stabilized α-boryl carbanions shows remarkable diversity, and can enable many different synthetic routes towards efficient C−C bond formation. The electron-deficient, trivalent boron center stabilizes the carbanion facilitating its generation and tuning its reactivity. Here, the electronic structure and the reactivity trends of a large dataset of α-boryl carbanions are described. DFT-derived parameters were used to capture their electronic and steric properties, computational reactivity towards model substrates, and crystallographic analysis within the Cambridge Structural Dataset. This study maps the reactivity space by systematically varying the nature of the boryl moiety, the substituents of the carbanionic center, the number of α-boryl motifs, and the metal counterion. In general, the free carbanionic intermediates are described as borata-alkene species with C−B π interactions polarized towards the carbon. Furthermore, it was possible to classify the α-boryl alkylidene metal precursors into three classes directly related to their reactivity: 1) nucleophilic borata-alkene salts with alkali and alkaline earth metals, 2) nucleophilic η2-(C−B) borata-alkene complexes with early transition metals, Cu and Ag, and 3) α-boryl alkyl complexes with late transition metals. This trend map aids selection of the appropriate reactive synthon depending on the reactivity sought.  相似文献   

10.
11.
The Mendeleev periodic table of atoms is one of the most important principles in natural science. However, there is shortage of analog for molecules. Here we propose two periodic tables, one for diatomic molecules and one for triatomic molecules. The form of the molecular periodic tables is analogous to that of Mendeleev periodic table of atoms. In the table, molecules are classified and arranged by their group number G, which is the number of valence electrons, and the periodic number P, which represents the size of the molecules. The basic molecular properties, including bond length, binding energy, force constant, ionization potential, spin multiplicity, chemical reactivity, and bond angle, change periodically within the tables. The periodicities of diatomic and triatomic molecules are thus revealed. We also demonstrate that the periodicity originates from the shell-like electronic configurations of the molecules. The periodic tables not only contain free molecules, but also the "virtual" molecules present in polyatomic molecules. The periodic tables can be used to classify molecules, to predict unknown molecular properties, to understand the role of virtual molecules in polyatomic molecules, and to initiate new research fields, such as the periodicities of aromatic species, clusters, or nanoparticles. The tables should be of interest not only to scientists in a variety of disciplines, but also to undergraduates studying natural sciences.  相似文献   

12.
门捷列夫元素周期表是自然科学中最重要的原则之一.然而,对于分子而言,却缺乏类似的表格.本文提出两个分别对应于二原子分子和三原子分子的周期表.这些分子周期表的格式和门捷列夫原子周期表相似.在这些表格中,分子依照它们各自的族数G和周期数P分类排列,G是价电子的数目而P则表示分子的尺寸.分子的基本性质,包括键长、结合能、力常数、电离势、自旋多重度、化学反应活性以及键角等等,都随着表中的G和P作周期性的变化.二原子分子和三原子分子的周期性因而被揭示开来.本文还进一步指出这种周期性是源出于分子的壳状电子构型.周期表中不仅包含了游离的分子,还包含了多原子分子中的“赝”分子.这些周期表可用来从本质上分类分子,广泛地预言分子的未知性质,了解在多原子分子中赝分子的作用,以及开拓新的研究领域,如芳香族、团簇或纳米微粒的周期性等.因此这些表格不仅能够引起多学科领域中科学工作者的关注,而且还能引起理科学生们的兴趣.  相似文献   

13.
In hydrogen‐metal‐phosphorus (H M P) transition metal complexes (proposed as intermediates of H P bond addition to alkynes in the catalytic hydrophosphorylation, hydrophosphinylation, and hydrophospination reactions), alkyne insertion into the metal‐hydrogen bond was found much more facile compared to alkyne insertion into the metal‐phosphorus bond. The conclusion was verified for different metals (Pd, Ni, Pt, and Rh), ligands, and phosphorus groups at various theory levels (B3LYP, B3PW91, BLYP, MP2, and ONIOM). The relative reactivity of the metal complexes in the reaction with alkynes was estimated and decreased in the order of Ni>Pd>Rh>Pt. A trend in relative reactivity was established for various types of phosphorus groups: PR2>P(O)R2>P(O)(OR)2, which showed a decrease in rate upon increasing the number of the oxygen atoms attached to the phosphorus center.  相似文献   

14.
A long-range corrected (LC) time-dependent density functional theory (TDDFT) incorporating relativistic effects with spin-orbit couplings is presented. The relativistic effects are based on the two-component zeroth-order regular approximation Hamiltonian. Before calculating the electronic excitations, we calculated the ionization potentials (IPs) of alkaline metal, alkaline-earth metal, group 12 transition metal, and rare gas atoms as the minus orbital (spinor) energies on the basis of Koopmans' theorem. We found that both long-range exchange and spin-orbit coupling effects are required to obtain Koopmans' IPs, i.e., the orbital (spinor) energies, quantitatively in DFT calculations even for first-row transition metals and systems containing large short-range exchange effects. We then calculated the valence excitations of group 12 transition metal atoms and the Rydberg excitations of rare gas atoms using spin-orbit relativistic LC-TDDFT. We found that the long-range exchange and spin-orbit coupling effects significantly contribute to the electronic spectra of even light atoms if the atoms have low-lying excitations between orbital spinors of quite different electron distributions.  相似文献   

15.
The iron-molybdenum cofactor (FeMo-co), which is the catalytic center for the enzymatic conversion of N(2) to NH(3), has the composition [NFe(7)MoS(9)(homocitrate)], and, with a cluster of eight transition metal atoms and nine sulfur atoms, has a complex delocalized electronic structure. The electronic dimensions of FeMo-co and of each of its derivatives appear as sets of electronic states lying close in energy. These electronic dimensions naturally partner the geometrical changes and the reactivity patterns during the catalytic cycle, and also connect with spectroscopic investigations of the mechanism. This paper describes straightforward computational procedures for the determination and management of the low-lying electronic states of FeMo-co and of its coordinated intermediates and transition states during density functional simulations of steps in the catalytic mechanism. General principles for the distribution of electron spin density over all atoms are presented, using several proposed intermediates as examples. A tough general irony arises in the distribution of spin density over FeMo-co and its derivatives: the less interesting atoms get the spin, and the most interesting atoms do not.  相似文献   

16.
Low-temperature fuel cells are appealing alternatives to the conventional internal combustion engines for transportation applications. However, in order for them to be commercially viable, effective, stable and low-cost electrocatalysts are needed for the Oxygen Reduction Reaction (ORR) at the cathode. In this contribution, on the basis of Density Functional Theory (DFT) calculations, we show that graphitic materials with active sites composed of 4 nitrogen atoms and transition metal atoms belonging to groups 7 to 9 in the periodic table are active towards ORR, and also towards Oxygen Evolution Reaction (OER). Spin analyses suggest that the oxidation state of those elements in the active sites should in general be +2. Moreover, our results verify that the adsorption behavior of transition metals is not intrinsic, since it can be severely altered by changes in the local geometry of the active site, the chemical nature of the nearest neighbors, and the oxidation states. Nonetheless, we find that these catalysts trend-wise behave as oxides and that their catalytic activity is limited by exactly the same universal scaling relations.  相似文献   

17.
The conversion of NO to N2 is a key issue encountered in the control of emission from vehicles. The selectivity of NO reduction on two platinum group metals, Ir and Pt, including the close-packed flat surface and the monatomic steps are extensively studied within the first-principles density functional theory framework. A stepped Ir surface is found to possess high selectivity for NO reduction, which is attributed to both the electronic and geometric structures of the Ir steps. The other surfaces considered fail to combine both attributes, activity and selectivity. In particular, a stepped Pt surface has a poor N2 selectivity with a large tendency for N2O production. The results explain the observed metal dependency and the structure sensitivity of the NO reduction under excess O2 conditions.  相似文献   

18.
Chemical trends within the periodic table are frequently used as guides for predicting reactivity, structure, and electronic properties of the elements. While these trends have been rigorously investigated for the transition metals, the understanding of trends within the actinide series is elementary in comparison. Herein, we report the synthesis and characterization of five new U(IV) sulfate compounds and discuss their relationship to previously reported An(IV) sulfate species, an analysis that allows for the elucidation of solid state trends across the actinides. One such trend suggests the increase in Lewis acidity that occurs when traversing the actinides from thorium to plutonium promotes bidentate binding of the sulfate ligand as long as complexation can outcompete the resulting increase in steric pressure. This hypothesis correlates well with the experimental results previously reported for the solution phase speciation in An(IV) sulfate systems.  相似文献   

19.
Most trivalent boron reagents are electrophiles owing to the vacancy for two electrons to fill the outer orbital of boron; however, interestingly, trivalent boron compounds can change their electrophilic character to a nucleophilic character by only changing the nature of the substituents on the boron atoms. With the help of computational tools, we have analyzed the structural‐ and electronic properties of boryl fragments that were either bonded to main‐group metals or coordinated to transition‐metals/rare‐earth‐metals and we have designed a map that might help to identify certain trends. This trend map will be useful for selecting an appropriate trivalent boron compound, depending on the sought reactivity.  相似文献   

20.
The C-N bond cleavage for the relative large molecule of methylamine on Cu(1111), Ag(111), Au(111), Ni(111), Rh(111), Pd(111), Pt(111), and Mo(100) has been systemically studied using the DFT-GGA method; the reaction energy changes and the activation energies were obtained. The calculated results show that the activation energy of C-N bond cleavage decreases as the metal element goes up and to the left across the periodic table, which is in general agreement with the experimental observation. Moreover, it was found that the steric effect should be considered for the metals with high activity and small radius such as Ni, which is much different from the case for the small molecule decomposition in which the steric effect may be ignored. The linear relationships between the activation energies and electronic properties (d-band center) are presented. It is expected that such a rule can be used to predict the reactivity of metal for other dissociative adsorption systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号