首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The kinetics of the gas‐phase elimination of α‐methyl‐trans‐cinamaldehyde catalyzed by HCl in the temperature range of 399.0–438.7 °C, and the pressure range of 38–165 Torr is a homogeneous, molecular, pseudo first‐order process and undergoing a parallel reaction to produce via (A) α‐methylstyrene and CO gas and via (B) β‐methylstyrene and CO gas. The decomposition of substrate E‐2‐methyl‐2‐pentenal was performed in the temperature range of 370.0–410.0 °C and the pressure range of 44–150 Torr also undergoing a molecular, pseudo first‐order reaction gives E‐2‐pentene and CO gas. These reactions were carried out in a static system seasoned reactions vessels and in the presence of toluene free radical inhibitor. The rate coefficients are given by the following Arrhenius expressions:
  • Products formation from α‐methyl‐trans‐cinamaldehyde
  • α‐methylstyrene :
  • β‐methylstyrene :
  • Products formation from E‐2‐methyl‐2‐pentenal
  • E‐2‐pentene :
The kinetic and thermodynamic parameters for the thermal decomposition of α‐methyl‐trans‐cinamaldehyde suggest that via (A) proceeds through a bicyclic transition state type of mechanism to yield α‐methylstyrene and carbon monoxide, whereas via (B) through a five‐membered cyclic transition state to give β‐methylstyrene and carbon monoxide. However, the elimination of E‐2‐methyl‐2‐pentenal occurs by way of a concerted cyclic five‐membered transition state mechanism producing E‐2‐pentene and carbon monoxide. The present results support that uncatalyzed α‐β‐unsaturated aldehydes decarbonylate through a three‐membered cyclic transition state type of mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Click chemistry is employed to couple two β‐cyclodextrins at both ends of azobenzene moiety yielding dumbbell‐shaped amphiphiles (AZO‐β‐CD dimer) constructed by rigid aromatic building blocks as “body”, and hydrophilic cyclodextrins as “head” with almost quantitative yield and purity. Bulk aggregates formed by the self‐assembly of the supraamphiphiles through π–π stacking and hydrophobic effect are observed. Meanwhile, the rationally designed polyesters, named as AZO‐PCL with controllable molecular weights and low polydispersities, are successfully synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of p‐aminoazobenzene as initiator. In the aqueous phase, very stable spherical particles are formed by host–guest interactions between AZO‐β‐CD and AZO‐PCLs; the spherical aggregates inherit the photo‐responsiveness of azobenzene. The detailed aggregation and disaggregation behaviors are fully investigated by TEM, SEM, NMR, 2D NOESY, IR, UV and XRD measurements. Compared to the previous works, our newly developed system can be fabricated with more readily manners, avoiding tedious synthetic process; the reversible and dynamic nature of the non‐covalent interactions also can be modulated alternatively by UV or visible light. Thus, such dumbbell‐shaped supra‐amphiphiles are of great potential applications in the controlled delivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Air‐tolerant 2,4‐bis(2,4,6‐tri‐t‐butylphenyl)‐1,3‐diphosphacyclobutane‐2,4‐diyl singlet biradicals can be prepared by utilizing the unique reactivity of a kinetically stabilized P≡C triple bond compound. In this procedure, we studied the spectroscopic properties of a fundamental unsymmetrical P‐heterocyclic biradical containing both PEt and PMe moieties, and the effects of the PCH2OMe group in relation to the stability of the P‐heterocyclic biradical skeleton. The experimentally observed nuclear magnetic resonance and photo‐absorption parameters of 1‐ethyl‐3‐methyl‐2,4‐bis(2,4,6‐tri‐t‐butylphenyl)‐1,3‐diphosphacyclobutane‐2,4‐diyl were discussed based on our previous findings and density functional theory calculations, suggesting particular structural characteristics of the P‐heterocyclic biradical skeleton and aromatic substituent effects on the sp2‐C atoms in the 4‐membered ring. Introduction of the methoxymethyl group in the P2C2 biradical moiety gave more stabilized 1,3‐diphosphacyclobutane‐2,4‐diyl derivatives. In comparison with considerably unstable biradicals bearing propargyl substituents, relatively higher lowest unoccupied molecular orbital energies suggest reluctant oxidation of the P‐heterocyclic skeleton. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A pseudo spectral one-centre method is used to evaluate the moments of the dipole oscillator strength distribution for the ground-state Li atom and the van der Waals constants for the ground-state Li-Li, Li-He and Li-H interactions. Various combinations of C.I. type Li atom ground and excited 2 P 0-state wavefunctions are used to construct the required pseudo spectral dipole oscillator strengths and excitation energies. The analysis of all the pseudo-state data yields recommended values for the Li dipole properties and van der Waals constants that are probably more accurate than those obtained previously. The calculations illustrate some of the advantages of the pseudo spectral approach for the evaluation of atomic and molecular properties and interaction energies.  相似文献   

6.
Theoretical calculations at the M05‐2X/6‐31+G(d) level of theory have been carried out in order to explore the nature of the mechanism of the thermal decomposition reactions of the β‐hydroxy ketones, 4‐hydroxy‐2‐butanone, 4‐hydroxy‐2‐pentanone, and 4‐hydroxy‐2‐methyl‐2‐pentanone in gas phase and in m‐xylene solution. The mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state. A reasonable agreement between experimental and calculated activation parameters and rate constants has been obtained, the tertiary : secondary : primary alcohol rate constant ratio being calculated, at T = 503.15 K, as 5.9:4.7:1.0 in m‐xylene solution and 44.1:5.0:1.0 in the gas phase, compared with the experimental values, 3.7:1.3:1.0 and 13.5:3.2:1.0, respectively. The progress of the thermal decomposition reactions of β‐hydroxy ketones has been followed by means of the Wiberg bond indices. The lengthening of the O1–C2 bond with the initial migration of the H6 atom from O5 to O1 can be seen as the driving force for the studied reactions. Calculated synchronicity values indicate that the mechanisms correspond to concerted and highly synchronous processes. The transition states are “advanced”, nearer to the products than to the reactants. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The Raman spectra of 3‐(pent‐1‐enyl) methyl ether (3‐methoxypent‐1‐ene) and four deuterium‐labelled analogues are reported and discussed. Correlations between specific structural features and the associated Raman bands are developed, with a view to enhancing the analytical application of Raman spectroscopy in investigating materials containing an alkenyl group. Particular attention is given to developing means of distinguishing the methyl group attached to the carbon skeleton from that of the methoxy group, to maximize the analytical utility of the signals associated with ν(sp2 CH), ν(sp2 CH2) and ν(CC) stretching vibrations, and to interpreting in more detail certain δ(sp2 CH) and δ(sp2 CH2) vibrations of the atoms of the double bond. These results establish a definitive spectroscopic protocol for differentiating a methoxy group from a methyl substituent attached directly to a carbon atom in unsaturated ethers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The aromatic nucleophilic substitution reaction of 3,6‐dichloro‐1,2,4,5‐tetrazine (DCT) with a series of biothiols RSH: (cysteine, homocysteine, cysteinyl–glycine, N‐acetylcysteine, and glutathione) is subjected to a kinetic investigation. The reactions are studied by following spectrophotometrically the disappearance of DCT at 370 nm. In the case of an excess of N‐acetylcysteine and glutathione, clean pseudo first‐order rate constants (kobs1) are found. However, for cysteine, homocysteine and cysteinyl–glycine, two consecutive reactions are observed. The first one is the nucleophilic aromatic substitution of the chlorine by the sulfhydryl group of these biothiols (RSH) and the second one is the intramolecular and intermolecular nucleophilic aromatic substitutions of their alkylthio with the amine group of RSH to give the di‐substituted compound. Therefore, in these cases, two pseudo first‐order rate constants (kobs1 and kobs2, respectively) are found under biothiol excess. Plots of kobs1 versus free thiol concentration at constant pH are linear, with the slope (kN) independent of pH (from 6.8 to 7.4). The kinetic data analysis (Brønsted‐type plot and activation parameters) is consistent with an addition–elimination mechanism with the nucleophilic attack as the rate‐determining step. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The base‐induced rearrangement of aziridines has been examined using a combination of calculations and experiment. The calculations show that the substituent on nitrogen is a critical feature that greatly affects the favorability of both α‐deprotonation, and β‐elimination to form an allylic amine. Experiments were carried out to determine whether E2‐like rearrangement to the allylic amine with lithium diisopropyl amide (LDA) is possible. N‐tosyl aziridines were found to deprotonate on the tosyl group, preventing further reaction. A variety of N‐benzenesulfonyl aziridines having both α‐ and β‐protons decomposed when treated with LDA in either tetrahydrofuran or hexamethylphosphoramide. However, when α‐protons were not present, allylic amine was formed, presumably via β‐elimination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The inclusion compounds of α‐, β‐ and γ‐cyclodextrins (α‐CD, β‐CD and γ‐CD) with trans‐cinnamic acid (t‐CIA), 3‐hydroxy‐trans‐cinnamic acid (t‐3OHCIA), 4‐hydroxy‐trans‐cinnamic acid (t‐4OHCIA) and 3,4‐dihydroxy‐trans‐cinnamic acid (t‐3,4OHCIA) were prepared and characterized, in the solid state, by means of thermogravimetry and Raman spectroscopy. The effects of the inclusion process on the guest molecules and on the hydrogen bond interactions of the guest were studied by monitoring sensitive vibrational modes, such as CO, CC and ring C H stretching modes. By combining Raman and TG data with ab initio calculations and information from CSD database on similar compounds, inclusion geometries for the different compounds are proposed. The size of the host cavity and the maximization of host/guest hydrogen‐bonding contacts appear to be the main factors determining the inclusion geometries. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The conformational equilibria of 3‐methyl‐3‐silathiane 5 , 3‐fluoro‐3‐methyl‐3‐silathiane 6 and 1‐fluoro‐1‐methyl‐1‐silacyclohexane 7 have been studied using low temperature 13C NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5 ax: 5 eq = 15:85, 6 ax: 6 eq = 50:50 and 7 ax: 7 eq = 25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol?1) is much less than in 3‐methylthiane 9 (1.40 kcal mol?1) but somewhat greater than in 1‐methyl‐1‐silacyclohexane 1 (0.23 kcal mol?1). Compounds 5–7 have low barriers to ring inversion: 5.65 (ax → eq) and 6.0 (eq → ax) kcal mol?1 ( 5 ), 4.6 ( 6 ), 5.1 (Meax → Meeq) and 5.4 (Meeq → Meax) kcal mol?1 ( 7 ). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6 , or different conformer ratio for 5 and 7 . Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si–X and adjacent C–H, C–S, and C–C bonds proved responsible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of solvents on chemical phenomena (rate and equilibrium constants, spectroscopic transitions, etc.) are conveniently described by solvation free‐energy relationships that take into account solvent acidity, basicity and dipolarity/polarizability. The latter can be separated into its components by manipulating the UV–vis spectra of two solvatochromic probes, 2‐(N,N‐dimethylamino)‐7‐nitrofluorene (DMANF) and a di‐(tert‐butyl)‐tetramethyl docosanonaen probe (ttbP9) whose synthesis is laborious and expensive. Recently, we have shown that the natural dye β‐carotene can be conveniently employed instead of ttbP9 for the determination of solvent polarizability (SP) of 76 molecular solvents and four ionic liquids. In the present work, we report the polarizabilities of further 24 solvents. Based on the solvatochromism of β‐carotene and DMANF, we have calculated solvent dipolarity (SD) for 103 protic and aprotic molecular solvents, and ionic liquids. The dependence of SD and SP on the number of carbon atoms in the acyl‐ or alkyl group of several homologous series (alcohols; 2‐alkoxyethanols; carboxylic acid‐ anhydrides, and esters, ionic liquids) is calculated and briefly discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The mechanism and regioselectivities and stereoselectivities of the [3 + 2] cycloaddition (32CA) reaction of 3‐(benzylideneamino) oxindole (AY) and trans‐β‐nitrostyrene have been studied using both B3LYP and ωB97XD density functional theory methods together with the standard 6‐31G(d) basis set. Four reactive pathways associated with the ortho and meta regioselective channels and endo and exo stereoselective approaches modes have been explored and characterized. While the B3LYP functional fails to predict the experimental regioselectivity, the ωB97XD one succeeds to predict the experimentally observed meta regioselectivity favoring the formation of meta/endo cycloadduct as the major isomer. Inclusion of solvent effects increases the regioselectivity and decreases the experimentally observed stereoselectivity. Analysis of the density functional theory global reactivity indices and the Parr functions of the reagents in its ground state allows explaining the reactivity and the meta regioselectivity of this zwitterionic‐type 32CA reaction, which account for the high polar character of this reaction. Non‐covalent interaction analysis of the most favorable meta/endo transition state structure reveals that the formation of a hydrogen‐bond between 1 nitro oxygen and the AY N–H hydrogen is responsible for the selectivity experimentally found in this polar zwitterionic‐type 32CA reaction.  相似文献   

15.
FT‐IR and FT‐Raman spectra of methyl(2‐methyl‐4,6–dinitrophenylsulfanyl)ethanoate (MDIE) were recorded and analyzed. Surface‐enhanced Raman scattering (SERS) spectra were recorded in silver colloid and silver electrode. The vibrational wavenumbers were computed using HF/6‐31G* and B3LYP/6‐31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared and Raman spectroscopies as well as in SERS of the studied molecule. The first hyperpolarizability and infrared intensities are reported. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The presence of new bands at 1045 and 948 cm−1 in the SERS spectrum in silver electrode is related to the change in orientation of the molecule with respect to the metal surface. In silver colloid SERS spectrum, the methyl group attached to the methoxy carbonyl group is close to the metal surface, whereas on silver electrode the methyl group attached to the phenyl ring is close to the metal surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Novel β‐cyclodextrin (β‐CD) dimers with aromatic diamine linkers, 1,3‐(aminomethyl)‐benzylamine‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (2) , 4,4′‐diaminodiphenylmethano‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (3) , and 4,4′‐ ethylenedianiline‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (4) , were synthesized. The inclusion complexation behaviors of these compounds, together with 4,4′‐aminophenyl ethyl‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (5) , with substrates such as acridine red (AR), neutral red (NR), ammonium 8‐anilino‐1‐naphthalenesulfonate (ANS), sodium 2‐(p‐toluidinyl) naphthalenesulfonate (TNS), rhodamine B (RhB), and brilliant green (BG), were investigated by ultraviolet, fluorescence, circular dichroism, and 2D NMR spectroscopy. The results indicated that the two linked CD units cooperatively bound to a guest, and the molecular binding affinity toward substrates, especially curved guest ANS and linear guests such as NR and AR, was increased. The linker length between two CD units played a crucial role in the molecular recognition of the hosts with guest dyes. The binding constants of the hosts for AR, TNS, ANS, and RhB decreased with increasing linker length in hosts 2‐4 . Moreover, structurally similar hosts 3 and 5 exhibited very different binding behavior for the guests. Host 5 showed much higher Ks values toward positively charged guests and lower Ks toward negatively charged guests than host 3 . The 2D NMR spectra of hosts 3 and 5 with RhB were acquired to understand the binding difference between 3 and 5 . The molecular binding ability and selectivity of model substrates by these hosts were sufficiently investigated to reveal not only the cooperative contributions of the linker group and CD cavities upon inclusion complexation with dye guest molecules, but also the controlling factors for the molecular selective binding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A rutile β‐MnO2 film was grown on MgO substrate using plasma‐assisted molecular beam epitaxy (PAMBE) monitored by reflection high‐energy electron diffraction (RHEED). Polarized Raman spectra at various temperatures were obtained to investigate the influence of the helimagnetic structure on the vibrational modes of β‐MnO2. A red shift of Eg modes indicates a gradual formation of spin angles between neighboring Mn4+ ions. The intensities of the Eg and A1g modes with y‐polarized incidence increase remarkably below the Néel temperature. A new view as vibrational mode projection (VMP) indicates the interactions between the magnetic component of incident light and the helimagnetic structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
B K Rao  T P Das 《Pramana》1982,19(3):289-302
Using linked cluster many-body perturbation theory, the frequency-dependent dipole polarizabilitiesa(ω) has been calculated for the lithium atom. The value ofa(ω) at the static limit (169.04a 0 3 ) matches well with other available theoretical values and experimental results. These values have been used to calculate the van der Waals constants for interactions of lithium, helium and neon atoms. The values of the van der Waals constants for dipole-dipole interaction in atomic units are −22.9, −44.8, −1465.8, 184950.0, 2011.8, 3896.5, 30.3, 59.0 and 115.1 for Li-He, Li-Ne, Li-Li, Li-Li-Li, Li-Li-He, Li-Li-Ne, Li-He-He, Li-He-Ne and Li-Ne-Ne interactions respectively. Obtaining the suitable response functions for lithium and helium atoms, the long range contribution to Δa(r)/a 0 in the study of fractional frequency shift in hyperfine pressure and temperature shift measurements is obtained as −541 atomic units.  相似文献   

19.
A series of trans‐2‐aminocyclohexanol derivatives have been explored as powerful conformational pH triggers. On protonation of the amino group, a conformer with equatorial position of ammonio and hydroxy groups becomes predominant because of an intramolecular hydrogen bond and electrostatic interactions. The energy of these interactions was estimated to be above 10 kJ/mol and in some models exceeded 20 kJ/mol (strong enough to twist a ring in tert‐butyl derivatives). As a result of this conformational flip, all other substituents are forced to change their orientation. If the substituents are designed to perform certain geometry‐dependent functions, for example, as cation chelators or as lipid tails, such acid‐induced transition may be used to control the corresponding molecular properties. The pH sensitivity of conformational equilibria was explored by 1H nuclear magnetic resonance spectroscopy (NMR), and the titration curves were used for estimation of the pKa values of protonated compounds that varied from 2.6 to 8.5 (in d4‐methanol) depending on the structure of amino group. Thus, trans‐2‐aminocyclohexanols can be also used as conformational pH indicators in organic solvents.  相似文献   

20.
A series of nitrophenyl β‐cyclodextrin derivatives: mono[6‐deoxy‐6‐(4‐nitrobenzamido)]‐per‐ O‐methyl‐β‐cyclodextrin (R1? Ph? NO2), mono[6‐deoxy‐6‐(3‐nitrobenzamido)]‐per‐O‐methyl‐β‐cyclodextrin (R2? Ph? NO2) and heptakis[6‐deoxy‐6‐(4‐nitrobenzamido)‐2,3‐di‐O‐methyl]‐β‐cyclodextrin [R3? (Ph? NO2)7] were synthesized. Purity and composition of the obtained substances were checked. Electroreduction of nitro groups of the new synthesized compounds was investigated on mercury electrode using cyclic voltammetry and chronocoulometry. The parameters of the reduction processes of ? NO2 groups of the investigated compounds were found not to be comparable to the reduction of nitrobenzene under the same experimental conditions. Moreover, the electroreduction of nitro groups in these nitrophenyl derivatives was dependent on pH, the type of the studied compound, and slightly on the solvent composition. All the reactants were strongly adsorbed on mercury electrode. In the case of R3? (Ph? NO2)7, its seven nitro groups were reduced practically at the same potential, and no radical anion formation was observed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号