首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallisation of the divalent nickel and cobalt complexes of 3-hydroxy-4-methyl-2(3H)-thiazolethione (HMTT) from DMSO yields isostructural chelate complexes M(MTT)2(dmso)2, M = CoII/NiII. The metal atom adopts distorted octahedral coordination via two bidentate MTT ligands arranged in a trans-conformation and two DMSO molecules coordinated through oxygen. Powder X-ray diffraction (PXRD) and energy-dispersive X-ray (EDX) analysis show that the materials form a continuous solid solution Co x Ni1–x (MTT)2(dmso)2 over the entire composition range 0 x 1.  相似文献   

2.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

3.
水热条件下,合成了三个新的配合物[Ni(en)3] (ndt) ·H2O 1, [Co(en)3] (ndt) ·H2O 2 和[Mn(en)3] (ndt) ·H2O 3。晶体结构通过X-射线单晶衍射进行了表征。三个配合物均属于单斜晶系,Cc空间群。[M(en)3]2+阳离子、ndt阴离子和结晶水分子通过氢键自组装出相同结构的三维网。通过紫外-可见-近红外漫反射光谱对这三个配合物的光吸收性能和能带进行了测定。  相似文献   

4.
Complexing processes in MII-N-diisopropoxythiophosphorylthiobenzamide binary systems (M = Co, Ni, Cu) in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices upon contact with aqueous–alkaline (pH = 12.0 ± 0.1) solutions of organic compounds have been studied. It has been shown that, in CoII and CuII, the initial act of complexing involves destruction of the CoII and CuII hexacyanoferrates(II) by OH ions, leading to formation of the corresponding hydroxides which react with the ligand indicated. In the both systems, successive addition of two ligand molecules per M(OH)2 fragment occurs and [MB(OH)(OH2)] and [MB2] coordination compounds are formed (B-a singly deprotonated ligand form). In the NiII-N-diisopropoxythiophosphorylthiobenzamide system, the formation of three complexes, (Ni2BOH)2[Fe(CN)6], [NiB(OH)(OH2)] and [NiB2] occurs.  相似文献   

5.
The compounds [Cu(pmda)(crea)]·H2O ( 1 ), [Zn(pmda)(crea)]·H2O ( 2 ) and [Co(pmda)(crea)(H2O)]·H2O ( 3 ) were prepared and characterized by thermal, spectral and X‐ray diffraction methods. In compounds 1 and 2 the MII coordination is of type 4+1 and approaches to a trigonal bipyramid (71.85 and 86.18 %, respectively) with rather linear N(pmda)‐MII‐N(crea) trans‐apical angles, but with different longest coordination bond (Cu‐O(pmda) or Zn‐N(apliphatic, pmda), respectively). Both compounds are isotypic and one intra‐molecular interligand N‐H···O interaction reinforces the molecular recogniton crea‐MII(pmda) chelate. In contrast, the compound 3 exhibits an octahedral coordination, imposed by the 3d7 electronic configuration of the cobalt(II) atom, and the crea‐chelate recognition involves the Co‐N(crea) coordination bond and one intramolecular ‘bifurcated’ H‐bonding interaction between one N‐H(crea) bond and one O(pmda) plus the O(aqua) atoms as ‘acceptors’.  相似文献   

6.
The imidazole‐based dicarboxylate ligand 2‐(4‐(pyridin‐4‐yl)phenyl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyPhIDC), was synthesized and its coordination chemistry was studied. Solvothermal reactions of CaII, MnII, CoII, and NiII ions with H3PyPhIDC produced four coordination polymers, [Ca(μ3‐HPyPhIDC)(H2O)2]n ( 1 ), {[M32‐H2PyPhIDC)23‐HPyPhIDC)26(H2O)2] · 6H2O}n [M = Mn ( 2 ), Co ( 3 )], and {[Ni(μ3‐HPyPhIDC)(H2O)] · H2O}n ( 4 ). Compounds 1 – 4 were analyzed by IR spectroscopy, elemental analyses, and single‐crystal and powder X‐ray diffraction. Compound 1 displays a one‐dimensional (1D) infinite chain. Compounds 2 and 3 are of similar structure, showing 2D network structures with a (4,4) topology based on trinuclear clusters. Compound 4 has another type of 2D network structure with a 3‐connected (4.82) topology. The results revealed that the structural diversity is attributed to the coordination numbers and geometries of metal ions as well as the coordination modes and conformations of H3PyPhIDC. Moreover, the thermogravimetric analyses of all the compounds as well as luminescence properties of the H3PyPhIDC ligand and compound 1 were also studied.  相似文献   

7.
The title compound, Cu0.5Mn2.5(PO4)2, is a copper–manganese phosphate solid solution with the graftonite‐type structure, viz. (Mn,Fe,Ca,Mg)3(PO4)2. The structure has three distinct metal cation sites, two of which are occupied by MnII and one of which accommodates CuII. Incorporation of CuII into the structure distorts the coordination geometry of the metal cation site from five‐coordinate square‐pyramidal towards four‐coordinate flattened tetrahedral, and serves to contract the structure principally along the c axis.  相似文献   

8.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

9.
The title cobalt(II) coordination polymer, poly[[diaquacobalt(II)]‐μ4‐3,3′‐(p‐phenylene)diacrylato], [Co(C12H8O4)(H2O)2]n, was obtained by reaction of Co(NO3)2·6H2O and 3,3′‐(p‐phenylene)diacrylic acid (H2L) under hydrothermal conditions. Each CoII cation sits on a centre of inversion and is hexacoordinated by six O‐atom donors in an octahedral geometry. The CoII centres are connected by four centrosymmetric L2− anions, resulting in a three‐dimensional framework structure. The coordinated water molecules and carboxylate O atoms form hydrogen‐bond interactions, stabilizing the structure of the three‐dimensional framework. Topologically, the framework represents a rare example of the three‐dimensional 4‐connected CdSO4 network type. The metal cations and the organic ligand both show in‐plane coordination with respect to the extended structure.  相似文献   

10.
It has recently been proposed that disulfide/thiolate interconversion supported by transition‐metal ions is involved in several relevant biological processes. In this context, the present contribution represents a unique investigation of the effect of the coordinated metal (M) on the Mn+?disulfide/M(n+1)+?thiolate switch properties. Like its isostructural CoII‐based parent compound, CoII 2 SS (Angew. Chem. Int. Ed.­ 2014 , 53, 5318), the new dinuclear disulfide‐bridged MnII complex MnII 2 SS can undergo an MII?disulfide/MIII?thiolate interconversion, which leads to the first disulfide/thiolate switch based on Mn. The coordination of iodide to the metal ion stabilizes the oxidized form, as the disulfide is reduced to the thiolate. The reverse process, which involves the reduction of MIII to MII with the concomitant oxidation of the thiolates, requires the release of iodide. The MnII 2 SS complex slowly reacts with Bu4NI in CH2Cl2 to afford the mononuclear MnIII?thiolate complex MnIIII . The process is much slower (ca. 16 h) and much less efficient (ca. 30 % yield) with respect to the instantaneous and quantitative conversion of CoII 2 SS into CoIIII under similar conditions. This distinctive behavior can be rationalized by considering the different electrochemical properties of the involved Co and Mn complexes and the DFT‐calculated driving force of the disulfide/thiolate conversion. For both Mn and Co systems, MII?disulfide/MIII?thiolate interconversion is reversible. However, when the iodide is removed with Ag+, the MII 2 SS complexes are regenerated, albeit much slower for Mn than for Co systems.  相似文献   

11.
The reaction of MnII and [NEt4]CN leads to the isolation of solvated [NEt4]Mn3(CN)7 ( 1 ) and [NEt4]2Mn3(CN)8 ( 2 ), which have hexagonal unit cells [ 1 : R$\bar 3$ m, a=8.0738(1), c=29.086(1) Å; 2 : P$\bar 3$ m1, a=7.9992(3), c=14.014(1) Å] rather than the face centered cubic lattice that is typical of Prussian blue structured materials. The formula units of both 1 and 2 are composed of one low‐ and two high‐spin MnII ions. Each low‐spin, octahedral [MnII(CN)6]4? bonds to six high‐spin tetrahedral MnII ions through the N atoms, and each of the tetrahedral MnII ions are bound to three low‐spin octahedral [MnII(CN)6]4? moieties. For 2 , the fourth cyanide on the tetrahedral MnII site is C bound and is terminal. In contrast, it is orientationally disordered and bridges two tetrahedral MnII centers for 1 forming an extended 3D network structure. The layers of octahedra are separated by 14.01 Å (c axis) for 2 , and 9.70 Å (c/3) for 1 . The [NEt4]+ cations and solvent are disordered and reside between the layers. Both 1 and 2 possess antiferromagnetic superexchange coupling between each low‐spin (S=1/2) octahedral MnII site and two high‐spin (S=5/2) tetrahedral MnII sites within a layer. Analogue 2 orders as a ferrimagnet at 27(±1) K with a coercive field and remanent magnetization of 1140 Oe and 22 800 emuOe mol?1, respectively, and the magnetization approaches saturation of 49 800 emuOe mol?1 at 90 000 Oe. In contrast, the bonding via bridging cyanides between the ferrimagnetic layers leads to antiferromagnetic coupling, and 3D structured 1 has a different magnetic behavior to 2 . Thus, 1 is a Prussian blue analogue with an antiferromagnetic ground state [Tc=27 K from d(χT)/dT].  相似文献   

12.
The crystal structure of the title compound, tetra­chloro­[μ‐1,1,4,7,7‐pentakis(1H‐benzimidazol‐2‐yl­methyl)‐1,4,7‐tri­azaheptane]­dimanganese(II) methanol pentasolvate tetrahydrate, [Mn2Cl4(C44H43N13)]·5CH4O·4H2O, contains an ­asymmetric dinuclear MnII–DTPB [DTPB is 1,1,4,7,7‐pentakis(1H‐benzimidazol‐2‐yl­methyl)‐1,4,7‐tri­aza­heptane] complex with an intra‐ligand bridging group (–NCH2CH2N–), as well as several solvate mol­ecules (methanol and water). Both MnII cations have similar distorted octahedral coordination geometries. One MnII cation is coordinated by a Cl anion and five N atoms from the ligand, and the other is coordinated by three Cl anions and three N atoms of the same ligand. The Mn⋯Mn distance is 7.94 Å. A Cl⋯H—O⋯H—O⋯H—N hydrogen‐bond chain is also observed, connecting the two parts of the complex.  相似文献   

13.
Three new thiostannates [M(en)3]2Sn2S6 (en = ethylenediamine, M = Mn( 1 ), Co( 2 ) and Zn( 3 )) were synthesized by solvothermal method. The crystals were grown up in a Teflon‐lined steel autoclave at temperature about 180 °C. All the three compounds consist of discrete [Sn2S6]4— anions, which are dimer of two tetrahedral SnS4 sharing a common edge. The transition metal cations are six‐coordinated by three ethylenediamine molecules forming octahedral complex ions. Although the synthetic procedures, the mole ratio of the reactants and the solvent are essentially the same, the compound of MnII is quite different in structure from that of compounds of CoII and ZnII. Compound 1 crystallizes in monoclinic crystal system, C2/c, whereas compounds 2 and 3 crystallize in the orthorhombic crystal system, Pbca. Unlike compound 1 , the [M(en)3]2+ cations in 2 and 3 are disordered. The difference of molecular packing between 1 and 2 ‐ 3 is considered due to the influence of the entities of the metal ions, such as radii and the coordination properties. The thermal chemical behaviors of the compounds 1 ‐ 3 were discussed and the results are also related to the property of the metal ions.  相似文献   

14.
Two mixed‐valent disc‐like hepta‐nuclear compounds of [FeIIFeIII6(tea)6](ClO4)2 ( 1Fe , tea = N(CH2CH2O)33?) and [MnII3MnIII4(nmdea)6(N3)6]·CH3OH ( 2Mn , nmdea = CH3N(CH2CH2O)22?) have been synthesized by the reaction of Fe(ClO4)2·6H2O with triethanolamine (H3tea) for the former and reaction of Mn(ClO4)2·6H2O with diethanolamine (H2nmdea) and NaN3 for the later, respectively. 1Fe has the cationic cluster with a planar [FeIIFeIII6] core consisting of one central FeII and six rim FeIII atoms in hexagonal arrangement. The Fe ions are linked by the oxo‐bridges from the alcohol arms in the manner of edge‐sharing of their coordination octahedra. 2Mn is a neutral cluster with a [MnII3MnIII4] core possessing one central MnII atom surrounded by six rim Mn ions, two MnII and four MnIII. The structure is similar to 1Fe but involves six terminal azido ligands, each coordinate one rim Mn ion. 1Fe showed dominant antiferromagnetic interaction within the cluster and long‐range ordering at 2.7 K. The cluster probably has a ground state of low spin of S = 5/2 or 4/2. The long‐range ordering is weak ferromagnetic, showing small hysteresis with a remnant magnetization of 0.3 Nβ and a coercive field of 40 Oe. Moreover, the isofield of lines 1Fe are far from superposition, indicating the presence of significant zero–field splitting. Ferromagnetic interactions are dominant in 2Mn . An intermediate spin ground state 25/2 is observed at low field. In high field of 50 kOe, the energetically lowest state is given by the ms = 31/2 component of the S = 31/2 multiplet due to the Zeeman effect. Despite of the large ground state, no single‐molecule magnet behavior was found above 2 K.  相似文献   

15.
Summary The preparation and characterization oftris-complexes of MnII, CoII, NiII, CuII and ZnII with a new pyridylhydrazone, 2-pyridylcarbaldehyde-N,N-dimethylhydrazone (pch), are described. In all the complexes pch behaves as a bidentate ligand binding through the pyridine and azomethyne nitrogen atoms. The complexes appear to be monomeric, high spin six-coordinate, and a distorted octahedral stereochemistry around the metal is suggested. The e.p.r. results for both CuII compounds indicate a mainly dx 2–y2 ground state with a static Jahn-Teller distortion, whilst for the MnII complex the e.p.r. data indicates a very low symmetry for the MnN6 polyhedron.  相似文献   

16.
By reaction of MIICl2·x H2O (M = Fe (x = 4), Co, Ni (x = 6)) and LiOH·H2O in diethylene glycol (DEG) rod‐like crystals of the composition MII4Cl4(OCH2CH2OCH2CH2OH)4 are formed. According to X‐ray diffraction data obtained by both, single crystals and powders, the CoII and NiII compounds crystallize monoclinic with C2/c (CoII4Cl4(OCH2CH2OCH2CH2OH)4 ( 1 ): a = 2084.1(4), b = 919.0(2), c = 1754.0(4) pm, β = 124.3(1)°, Z = 4; NiII4Cl4(OCH2CH2OCH2CH2OH)4 ( 2 ): a = 2055.2(4), b = 932.1(2), c = 1727.4(4) pm, β = 125.2(1)°, Z = 4), whereas FeII4Cl4(OCH2CH2OCH2CH2OH)4 ( 3 ) crystallizes tetragonal with (a = 1251.4(2), c = 915.3(2) pm, Z = 2). All compounds exhibit analogous molecular structures which are built of a heterocubane‐type core consisting of four metal ions and four deprotonated oxygen atoms of four coordinated diethylene glycol molecules. Neutrality of charge is realized by additional coordination of four chloride anions. In addition to the structural characterization, the thermal and magnetical properties of the title compounds are investigated in detail.  相似文献   

17.
Two tetranuclear clusters of formula [M4L4(HOMe)4] {H2L = (E)‐1‐[(2‐(hydroxymethyl)phenylimino)methyl]naphthalen‐2‐ol} [M = Co ( 1 ), Ni ( 2 )] were hydrothermally synthesized by reaction of M(OAc)2 · 4H2O with H2L and NaOH in MeOH. X‐ray crystal structure analysis revealed that complexes 1 and 2 are isostructural. In the core of the structures, four MII ions and four oxygen atoms occupied alternate vertices of [M4O4] cubane. The magnetic property measurements of 1 and 2 revealed that overall ferromagnetic MII ··· MII exchange interactions exist in both complexes.  相似文献   

18.
Poly[[tetraaquadi‐μ4‐citrato‐tetrakis(2,6‐diaminopurine)tetracobalt(II)] 6.35‐hydrate], {[Co4(C6H4O7)2(C5H6N6)4(H2O)4]·6.35H2O}n, presents three different types of CoII cations in the asymmetric unit, two of them lying on symmetry elements (one on an inversion centre and the other on a twofold axis). The main fragment is further composed of one fully deprotonated citrate (cit) tetraanion, two 2,6‐diaminopurine (dap) molecules and two aqua ligands. The structure is completed by a mixture of fully occupied and disordered solvent water molecules. The two independent dap ligands are neutral and the cit tetraanion provides for charge balance, compensating the 4+ cationic charge. There are two well defined coordination geometries in the structure. The simplest is mononuclear, with the CoII cation arranged in a regular centrosymmetric octahedral array, coordinated by two aqua ligands, two dap ligands and two O atoms from the β‐carboxylate groups of the bridging cit tetraanions. The second, more complex, group is trinuclear, bisected by a twofold axis, with the metal centres coordinated by two cit tetraanions through their α‐ and β‐carboxylate and α‐hydroxy groups, and by two dap ligands bridging through one of their pyridine and one of their imidazole N atoms. The resulting coordination geometry around each metal centre is distorted octahedral. Both groups are linked alternately to each other, defining parallel chains along [201], laterally interleaved and well connected via hydrogen bonding to form a strongly coupled three‐dimensional network. The compound presents a novel μ4‐κ5O:O,O′:O′,O′′,O′′′:O′′′′ mode of coordination of the cit tetraanion.  相似文献   

19.
Two new isostructural complexes, [Mn3(L)6(bipy)2] ( 1 ) and [Co3(L)6(bipy)2] ( 2 ) (L = 2,4‐dichlorobenzoate, bipy = 2, 2′‐bipyridine) were synthesized under the hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, EA (elemental analysis), and magnetic measurements. The two complexes are found to contain a trinuclear (M3) unit that opens up a possibility of being magnetic materials. The magnetic measurements reveal that 1 exhibits the antiferromagnetic exchange interaction between metal ions and 2 presents a weak ferromagnetic interactions between the CoII ions.  相似文献   

20.
Three new coordination compounds, [Pb(HBDC‐I4)2(DMF)4]( 1 ) and [M(BDC‐I4)(MeOH)2(DMF)2]n (M = ZnII for 2 and MnII for ( 3 ) (H2BDC‐I4 = 2, 3, 5, 6‐tetraiodo‐1, 4‐benzenedicarboxylic acid), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X‐ray single crystal structure analysis. Single‐crystal X‐ray diffraction reveals that 1 crystallizes in the monoclinic space group C2/c and has a discrete mononuclear structure, which is further assembled to form a two‐dimensional (2D) layer through intermolecular O–H ··· O and C–H ··· O hydrogen bonding interactions. The isostructural compounds 2 and 3 crystallize in the space group P21/c and have similar one‐dimensional (1D) chain structures that are extended into three‐dimensional (3D) supramolecular networks by interchain C–H ··· π interactions. The PbII and ZnII complexes 1 and 2 display similar emissions at 472 nm in the solid state, which essentially are intraligand transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号