首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Building on the earlier analysis by Berlin (1991) , this paper reviews various studies on integrating mathematics and science in the 1990s and provides some implications for further research. The areas identified for further exploration include comparison of the nature of mathematics and science, epistemological debates in mathematics and in science education, the bases used to emphasize science over mathematics or vice versa, empirical evidence of effectiveness of integration, connections between teacher education programs for integration and teachers' subsequent classroom teaching practices, perceptions of integration on the part of teacher educators, contextual difficulties in implementing integrated approaches and possible solutions, and rationales of integrating mathematics and science through technology. In order to help all students become scientifically literate, which most reform documents call for, more focused attention on integration of curriculum and instruction is necessary.  相似文献   

2.
Though national standards emphasize the importance of connections between math and science, few empirical studies exist to support the notion that student achievement increases from such integration. This paper examines an eighth‐grade science class that integrated mathematics into science through the use of technology. In a setting of action research, the effects of such integration were examined. This paper reports that integrating mathematics into the science class positively affected students' achievement in their math class and describes the circumstances under which the integration occurred.  相似文献   

3.
Many members of the mathematics and science education community believe that the integration of mathematics and science enhances students' understanding of both subjects. Despite this belief, attempts to integrate these subjects have frequently been unsuccessful. This study examines the development and implementation of a team‐taught integrated middle level mathematics and science methods course. The data presented in this study were collected from three groups of preservice teachers who were enrolled in a grades 5–8 middle level teacher certification program in Connecticut from 1998–2000. The data analysis indicates that preservice teachers appreciated the emphasis on integration used in the course, but at the same time when concepts did not integrate easily they were frustrated. Despite this frustration, the preservice teachers' understanding of integration was enhanced as a result of the course.  相似文献   

4.
The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the ‘other subject’ and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.  相似文献   

5.
6.
The press to integrate mathematics and science comes from researchers, business leaders, and educators, yet research that examines ways to support teachers in relating these disciplines is scant. Using research on science and mathematics professional development, we designed a professional development project to help elementary teachers improve their teaching of mathematics and science by strategically connecting these disciplines. The purposes of this study are: (a) to identify changes in teachers' confidence and practice after participating in the professional development and (b) to identify different ways to connect mathematics and science during the professional development. We use a Likert‐scale survey to assess changes in teachers' confidence related to teaching mathematics and science. In addition, we report on a thematic analysis of teachers' written responses to open‐ended questions that probed teachers' perceived changes in practice. We analyze field notes from observations of project workshops to document different types of opportunities for connecting mathematics and science. We conclude with implications for future professional development that connects mathematics and science in meaningful ways, as well as suggestions for future research.  相似文献   

7.
A number of national science and mathematics education professional associations, and recently technology education associations, are united in their support for the integration of science and mathematics teaching and learning. The purpose of this historical analysis is two‐fold: (a) to survey the nature and number of documents related to integrated science and mathematics education published from 1901 through 2001 and (b) to compare the nature and number of integrated science and mathematics documents published from 1990 through 2001 to the previous 89 years (1901–1989). Based upon this historical analysis, three conclusions have emerged. First, national and state standards in science and mathematics education have resulted in greater attention to integrated science and mathematics education, particularly in the area of teacher education, as evidenced by the proliferation of documents on this topic published from 1901–2001. Second, the historical comparison between the time periods of 1901–1989 versus 1990–2001 reveals a grade‐level shift in integrated instructional documents. Middle school science continues to be highlighted in integrated instructional documents, but surprisingly, a greater emphasis upon secondary mathematics and science education is apparent in the integration literature published from 1990–2001. Third, although several theoretical integration models have been posited in the literature published from 1990–2001, more empirical research grounded in these theoretical models is clearly needed in the 21st century.  相似文献   

8.
Science and mathematics are naturally and logically related in the real world. Educators are trying to capture this relationship in the classroom in an effort to improve students' achievement and attitude in both disciplines. However, the literature abounds with terms and definitions related to the integration of science and mathematics education. The Berlin-White Integrated Science and Mathematics (BWISM) Model was developed to provide a template to characterize current resources, guide in the development of new materials, and provide a common language to advance the research base related to integrated science and mathematics teaching and learning.  相似文献   

9.
10.
This article describes the Lead Teacher Component of the NSF-funded State Systemic Initiative, Virginia's Quality Education in Science and Technology (V-QUEST). Part of V-QUEST focuses on the integration of mathematics and science in elementary and middle schools. Some recent research findings and recommendations which informed the planning and decisions are cited. The article describes the guiding principles, objectives, strategies, and agencies involved in the project. An outline of how the integration of mathematics and science elements were developed is provided and some preliminary outcomes are catalogued. An important feature of the systemic project is the manner through which it includes a wide range of individuals and organizations concerned with education in all the planning and implementation phases.  相似文献   

11.
If integration of mathematics and science is to occur, teacher preparation programs at colleges and universities must provide leadership in developing and modeling methods of teaching integrated content. This paper describes the development and implementation of an integrated mathematics/science preservice elementary methods course at the University of Connecticut. In planning the course several questions were addressed: (a) What does integration of mathematics and science mean? (b) What content should be taught in an integrated mathematics/science (IM/S) elementary methods course? and (c) How should an IM/S elementary methods course be taught? An important element of the course involved enlisting an exemplary elementary teacher who was released from her classroom one day per week to co-teach the methods class. Establishing a definition of integration proved to be one of the most challenging aspects of course development. The authors determined that most difficulties in integration of disciplines result from attempts to “force” the integration. As the team struggled with the philosophical, theoretical and logistical problems in the development of the course, it became apparent why integration has not been more widely implemented. It is believed this model can be adapted to allow for integration of all content areas. Plans are currently underway to incorporate social studies into the methods class for Fall of 1993.  相似文献   

12.
Based upon current research needs indicated from recent literature reviews, this integrative review concentrates on two of the perceived major impediments to integrating science and mathematics: The lack of evidence to support integration and the lack of a definition for integration. Using mixed methodology, this review found quantitative evidence favoring integration from a meta-analysis of 31 studies of student achievement, qualitative evidence revealing the existence of multiple forms of integration, and historical evidence of publishing patterns from across the 20th century. The forms of integration were identified and defined; differential effects were identified both between forms and between science and mathematics when the forms were analyzed by effect size. Additional research implications and suggestions for future research were also identified.  相似文献   

13.
Mathematical writing recently has been defined as writing to reason and communicate mathematically. But mathematics instructional resources lack guidance for teachers as to how to implement such writing. The purpose of this paper is to describe how methods of design-based research were used to develop an instructional resource when one does not currently exist. Thirty-four participants—including teachers, mathematics coaches, mathematics curriculum developers, literacy coaches, a mathematician, and academics in elementary mathematics education, mathematics education, writing education, and science education—participated in a multi-step process to recommend, revise, and confirm instructional guidelines for elementary mathematical writing. The development process began with thirty-two recommendations from science writing and language arts writing. Through multiple cycles of feedback, five instructional guidelines and related considerations and techniques for implementation of elementary mathematical writing emerged.  相似文献   

14.
The purpose of this study was to examine the relationship between different types of professional development, teachers' instructional practices, and the achievement of students in science and mathematics. The types of professional development studied included immersion, examining practice, curriculum implementation, curriculum development, and collaborative work. Data regarding teachers' instructional practices and the amount of professional development were collected using teacher surveys. Ninety‐four middle school science teachers and 104 middle school mathematics teachers participated in the study. Student achievement was measured using eighth grade state science and mathematics achievement test data. Regression analyses suggested that for both science and mathematics teachers, examining practice and curriculum development were significantly related to the use of standards‐based instructional practices. Only curriculum development for mathematics teachers was significantly related to student achievement. Implications of results for the professional development of science and mathematics teachers are discussed.  相似文献   

15.
16.
Professional development (PD) programs focused on increasing teachers' use of formative assessment generally provide a framework designed to help teachers understand the breadth and complexity of formative assessment, while advocating for teacher choice with respect to the specific implementation. This study examined the implementation patterns of 82 high school mathematics and science teachers to understand whether implementation approaches differed by content area. Results suggested that mathematics and science teachers significantly increased their self‐reported practice of formative assessment, in similar ways; however, the specific approaches that mathematics and science teachers chose to operationalize on a daily basis differed. These findings have implications for the design of PD and future research efforts.  相似文献   

17.
This study examined teachers’ and parents’ beliefs on the implementation of inquiry-based modeling activities as a means to facilitate parental engagement in school mathematics and science. The study had three objectives: (a) to describe teachers’ beliefs about inquiry-based mathematics and science and parental engagement; (b) to describe parents’ beliefs about inquiry-based mathematics and science and their engagement in inquiry-based problem solving; and (c) to explore the impact of an inquiry-based learning environment comprising a model-eliciting activity and Twitter. The research involved three sixth-grade teachers and 32 parents from one elementary school. Teachers and parents participated in workshops, followed by the implementation of a model-eliciting activity in two classrooms. Three teachers and six parents participated in semi-structured interviews. Teachers reported positive beliefs on parental engagement in the mathematics and science classrooms and the potential positive role of parents in implementing innovative problem-solving activities. Parents expressed strong beliefs on their engagement and welcomed the inquiry-based modeling approach. Based on the results of this aspect of a four-year longitudinal design, implications for parental engagement in inquiry-based mathematics and science teaching and learning and further research are discussed.  相似文献   

18.
This study examined the science and mathematics instruction of teachers who were initially prepared by the Collaboratives for Excellence in Teacher Preparation program (CETP). The focus of this study was on examining the extent to which science and mathematics teachers used more reform‐oriented instructional practices in their classes when they entered the teaching profession. Data were gathered from twelve different CETP projects across the United States. A quasi‐experimental design was used where science and mathematics teachers who were initially prepared by the CETP program were followed into the field and compared to teachers who were not prepared by the CETP program. The results indicate that the teachers prepared by the CETP program used slightly more reform‐oriented instructional practices than teachers who were not prepared by the CETP program, although both mathematics and science teachers reported low levels of reform‐oriented instruction. Implications of results for large‐scale reform of science and mathematics teacher preparation are discussed.  相似文献   

19.
This paper reports on initial results from an ongoing evaluation study of a National Science Foundation project to implement reform‐oriented teaching practices in college science and mathematics courses. The purpose of this study was to determine what elements of reform teaching are being utilized by college faculty members teaching undergraduate science and mathematics courses, including a qualitative estimate of the frequency with which they are used. Participating instructors attended summer institutes that modeled reform‐based practices and fostered reflection on current issues in science, mathematics, and technological literacy for K‐16 teaching, with an explicit emphasis on the importance of creating the best possible learning experience for prospective K‐12 science and mathematics teachers. Utilizing a unique classroom observation protocol (the Oregon‐Teacher Observation Protocol) and interviews, the authors (a) conclude that some reform‐oriented teaching strategies are evident in undergraduate mathematics and science instruction and (b) suggest areas in which additional support and feedback are needed in order for higher education faculty members to adopt reform‐based instructional methodology.  相似文献   

20.
Integrated mathematics and science teaching and learning is a widely advocated yet largely unexplored phenomenon. This study involves an examination of middle school integrated mathematics and science education from two perspectives—theory and practice. The theoretical component of this research addresses the ill-defined nature of the phrase integrated mathematics and science education. A conceptual framework in the form of a Mathematics/Science Continuum is presented to lend clarity and precision to this phrase. The theoretical framework is then used to guide analysis of tasks students are engaged in during instructional practice in middle school classrooms, where the goal of instruction is full integration of mathematics and science. Barriers to integrating mathematics and science in the school curriculum are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号