首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.  相似文献   

2.
Magnetic Resonance Imaging (MRI) uses non-ionizing radiations and is safer as compared to CT and X-ray imaging. MRI is broadly used around the globe for medical diagnostics. One main limitation of MRI is its long data acquisition time. Parallel MRI (pMRI) was introduced in late 1990's to reduce the MRI data acquisition time. In pMRI, data is acquired by under-sampling the Phase Encoding (PE) steps which introduces aliasing artefacts in the MR images. SENSitivity Encoding (SENSE) is a pMRI based method that reconstructs fully sampled MR image from the acquired under-sampled data using the sensitivity information of receiver coils. In SENSE, precise estimation of the receiver coil sensitivity maps is vital to obtain good quality images. Eigen-value method (a recently proposed method in literature for the estimation of receiver coil sensitivity information) does not require a pre-scan image unlike other conventional methods of sensitivity estimation. However, Eigen-value method is computationally intensive and takes a significant amount of time to estimate the receiver coil sensitivity maps. This work proposes a parallel framework for Eigen-value method of receiver coil sensitivity estimation that exploits its inherent parallelism using Graphics Processing Units (GPUs). We evaluated the performance of the proposed algorithm on in-vivo and simulated MRI datasets (i.e. human head and simulated phantom datasets) with Peak Signal-to-Noise Ratio (PSNR) and Artefact Power (AP) as evaluation metrics. The results show that the proposed GPU implementation reduces the execution time of Eigen-value method of receiver coil sensitivity estimation (providing up to 30 times speed up in our experiments) without degrading the quality of the reconstructed image.  相似文献   

3.
Magnetic resonance imaging (MRI) has an important feature that it provides multiple images with different contrasts for complementary diagnostic information. However, a large amount of data is needed for multi-contrast images depiction, and thus, the scan is time-consuming. Many methods based on parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) are applied to accelerate multi-contrast MR imaging. Nevertheless, the image reconstructed by sophisticated pMRI methods contains residual aliasing artifact that degrades the quality of the image when the acceleration factor is high. Other methods based on CS always suffer the regularization parameter-selecting problem. To address these issues, a new method is presented for joint multi-contrast image reconstruction and coil sensitivity estimation. The coil sensitivities can be shared during the reconstruction due to the identity of coil sensitivity profiles of different contrast images for imaging stationary tissues. The proposed method uses the coil sensitivities as sharable information during the reconstruction to improve the reconstruction quality. As a result, the residual aliasing artifact can be effectively removed in the reconstructed multi-contrast images even if the acceleration factor is high. Besides, as there is no regularization term in the proposed method, the troublesome regularization parameter selection in the CS can also be avoided. Results from multi-contrast in vivo experiments demonstrated that multi-contrast images can be jointly reconstructed by the proposed method with effective removal of the residual aliasing artifact at a high acceleration factor.  相似文献   

4.
Parallel imaging and compressed sensing have been arguably the most successful and widely used techniques for fast magnetic resonance imaging (MRI). Recent studies have shown that the combination of these two techniques is useful for solving the inverse problem of recovering the image from highly under-sampled k-space data. In sparsity-enforced sensitivity encoding (SENSE) reconstruction, the optimization problem involves data fidelity (L2-norm) constraint and a number of L1-norm regularization terms (i.e. total variation or TV, and L1 norm). This makes the optimization problem difficult to solve due to the non-smooth nature of the regularization terms. In this paper, to effectively solve the sparsity-regularized SENSE reconstruction, we utilize a new optimization method, called fast composite splitting algorithm (FCSA), which was developed for compressed sensing MRI. By using a combination of variable splitting and operator splitting techniques, the FCSA algorithm decouples the large optimization problem into TV and L1 sub-problems, which are then, solved efficiently using existing fast methods. The operator splitting separates the smooth terms from the non-smooth terms, so that both terms are treated in an efficient manner. The final solution to the SENSE reconstruction is obtained by weighted solutions to the sub-problems through an iterative optimization procedure. The FCSA-based parallel MRI technique is tested on MR brain image reconstructions at various acceleration rates and with different sampling trajectories. The results indicate that, for sparsity-regularized SENSE reconstruction, the FCSA-based method is capable of achieving significant improvements in reconstruction accuracy when compared with the state-of-the-art reconstruction method.  相似文献   

5.
Parallel MRI at microtesla fields   总被引:2,自引:2,他引:0  
Parallel imaging techniques have been widely used in high-field magnetic resonance imaging (MRI). Multiple receiver coils have been shown to improve image quality and allow accelerated image acquisition. Magnetic resonance imaging at ultra-low fields (ULF MRI) is a new imaging approach that uses SQUID (superconducting quantum interference device) sensors to measure the spatially encoded precession of pre-polarized nuclear spin populations at microtesla-range measurement fields. In this work, parallel imaging at microtesla fields is systematically studied for the first time. A seven-channel SQUID system, designed for both ULF MRI and magnetoencephalography (MEG), is used to acquire 3D images of a human hand, as well as 2D images of a large water phantom. The imaging is performed at 46 mu T measurement field with pre-polarization at 40 mT. It is shown how the use of seven channels increases imaging field of view and improves signal-to-noise ratio for the hand images. A simple procedure for approximate correction of concomitant gradient artifacts is described. Noise propagation is analyzed experimentally, and the main source of correlated noise is identified. Accelerated imaging based on one-dimensional undersampling and 1D SENSE (sensitivity encoding) image reconstruction is studied in the case of the 2D phantom. Actual threefold imaging acceleration in comparison to single-average fully encoded Fourier imaging is demonstrated. These results show that parallel imaging methods are efficient in ULF MRI, and that imaging performance of SQUID-based instruments improves substantially as the number of channels is increased.  相似文献   

6.
The purpose of this study was to present clinical examples and illustrate the inefficiencies of a conventional reconstruction using a commercially available phased array coil with localized sensitivities. Five patients were imaged at 1.5 T using a cardiac-synchronized gadolinium-enhanced acquisition and a commercially available four-element phased array coil. Four unique sets of images were reconstructed from the acquired k-space data: (a) sum-of-squares image using four elements of the coil; localized sum-of-squares images from the (b) anterior coils and (c) posterior coils and a (c) local reconstruction. Images were analyzed for artifacts and usable field-of-view. Conventional image reconstruction produced images with fold-over artifacts in all cases spanning a portion of the image (mean 90 mm; range 36-126 mm). The local reconstruction removed fold-over artifacts and resulted in an effective increase in the field-of-view (mean 50%; range 20-70%). Commercially available phased array coils do not always have overlapping sensitivities. Fold-over artifacts can be removed using an alternate reconstruction method. When assessing the advantages of parallel imaging techniques, gains achieved using techniques such as SENSE and SMASH should be gauged against the acquisition time of the localized method rather than the conventional sum-of-squares method.  相似文献   

7.
8.
并行MRI图像重建算法比较及软件实现   总被引:2,自引:1,他引:1  
黄敏  陈军波  熊琼  汪超  李宁 《波谱学杂志》2011,28(1):99-108
首先介绍了不加速的并行MRI图像重建方法,然后对加速的并行MRI的4种图像重建算法进行了比较,得出结论:加速因子相同时,重建质量上,GRAPPA和SENSE的重建质量最好,SMASH的重建质量次之, PILS算法对线圈位置要求极高,重建质量最差;重建速度上,SMASH的重建速度最快,其次是SENSE和PILS,GRAPPA的重建速度最慢. 当加速因子变大时,所有算法重建质量都变差. 最后介绍了算法实现软件,该软件可以读入原始数据,显示数据采集轨迹,计算线圈灵敏度,选择图像重建方法,分析和比较重建图像质量. 该软件为我国在MRI成像领域提供了一个学习和进一步研究图像重建算法的有力工具.  相似文献   

9.
Conjugate gradient SENSE (CG-SENSE) is a parallel magnetic resonance imaging reconstruction algorithm which solves the inversion problem of SENSE iteratively. One major limitation of CG-SENSE is the appropriate choice of the number of iterations required for good reconstruction results. Fewer iterations result in aliasing artifacts and too many iterations result in an increased noise level. This paper proposes a novel method to define the stopping criterion of CG-SENSE algorithm which is based on the use of correlation measure between the line profiles of the reconstructed images in the current and the previous iterations. The results are compared with Bregman distance-stopping criterion. Artifact power and peak signal-to-noise ratio are used to quantify the quality of the reconstructed images. The results demonstrate that the line profile correlation measure acts as an effective stopping criterion in CG-SENSE.  相似文献   

10.
11.
The acquisition time of three-dimensional magnetic resonance imaging (3-D MRI) is too long to tolerate in many clinical applications. At present, parallel MRI (pMRI) and partial Fourier (PF) with homodyne detection, including 2-D pMRI (two-dimensional pMRI) and PF_pMRI (the combination of PF and pMRI), are often used to accelerate data sampling in 3-D MRI. However, the performances of 2-D pMRI and PF_pMRI have been seldom discussed. In this paper, we choose GRAPPA (generalized auto-calibrating partially parallel acquisition) as a representative pMRI to analyze and compare the performances of 2-D GRAPPA and PF_GRAPPA, including the noise standard deviation (SD), root mean-square error (RMSE) and g factor, through a series of in vitro experiments. A series of phantom experiments show that the SD, RMSE and g-factor values of PF_GRAPPA are lower than those of 2-D GRAPPA under the same acceleration factor. It demonstrates that the performance of PF_GRAPPA is better than that of 2-D GRAPPA. PF_GRAPPA can be used in any thickness of imaging slab, while 2-D GRAPPA can only be used in thick slab due to the difficulties in determination of the fitting coefficients which result from imperfect RF pulse. In vivo brain experiment results also show that the performance of PF_GRAPPA is better than that of 2-D GRAPPA.  相似文献   

12.
PURPOSE: This study aimed to investigate the use of anatomically tailored hexagonal sampling for scan-time and error reduction in MRI. MATERIALS AND METHODS: Anatomically tailored hexagonal MRI (ANTHEM), a method that combines hexagonal sampling with specific symmetry in anatomical geometry, is proposed. By using hexagonal sampling, aliasing artifacts are moved to regions where, due to the nature of the anatomy, aliasing is inconsequential. This can be used to either reduce scan time while maintaining spatial resolution or reduce residual errors in speedup techniques like UNFOLD and k-t BLAST/SENSE, which undersample k-space and unwrap fold-over artifacts during reconstruction. Computer simulations as well as phantom and volunteer studies were used to validate the theory. A simplified reconstruction algorithm for hexagonally sampled and subsampled k-space data was also used. RESULTS: A reduction in sampling density of 13.4% and 25% in each hexagonally sampled dimension was achieved for spherical and conical geometries without aliasing or reduction in spatial resolution. Optimal subsampling schemes that can be utilized by UNFOLD and k-t BLAST/SENSE were derived using hexagonal subsampling, which resulted in maximal, isotropic dispersal of the aliases. In combination with UNFOLD, ANTHEM was shown to move residual aliasing artifacts to the corners of the field of view, yielding reduced artifacts in CINE reconstructions. CONCLUSIONS: ANTHEM was successful in reducing acquisition time in conventional MRI and in reducing errors in UNFOLD imaging.  相似文献   

13.
Sensitivity Encoding (SENSE) is a widely used technique in Parallel Magnetic Resonance Imaging (MRI) to reduce scan time. Reconfigurable hardware based architecture for SENSE can potentially provide image reconstruction with much less computation time. Application specific hardware platform for SENSE may dramatically increase the power efficiency of the system and can decrease the execution time to obtain MR images. A new implementation of SENSE on Field Programmable Gate Array (FPGA) is presented in this study, which provides real-time SENSE reconstruction right on the receiver coil data acquisition system with no need to transfer the raw data to the MRI server, thereby minimizing the transmission noise and memory usage. The proposed SENSE architecture can reconstruct MR images using receiver coil sensitivity maps obtained using pre-scan and eigenvector (E-maps) methods. The results show that the proposed system consumes remarkably less computation time for SENSE reconstruction, i.e., 0.164 ms @ 200 MHz, while maintaining the quality of the reconstructed images with good mean SNR (29 + dB), less RMSE (< 5 × 10 2) and comparable artefact power (< 9 × 10 4) to conventional SENSE reconstruction. A comparison of the center line profiles of the reconstructed and reference images also indicates a good quality of the reconstructed images. Furthermore, the results indicate that the proposed architectural design can prove to be a significant tool for SENSE reconstruction in modern MRI scanners and its low power consumption feature can be remarkable for portable MRI scanners.  相似文献   

14.
磁共振成像(MRI)无创无害、对比度多、可以任意剖面成像的特点特别适合用于心脏成像,却因扫描时间长限制了其在临床上的应用.为了解决心脏磁共振电影成像屏气扫描时间过长的问题,该文提出了一种基于同时多层激发的多倍加速心脏磁共振电影成像及其影像重建的方法,该方法将相位调制多层激发(CAIPIRINHA)技术与并行加速(PPA)技术相结合,运用到分段采集心脏电影成像序列中,实现了在相位编码方向和选层方向的四倍加速,并使用改进的SENSE/GRAPPA算法对图像进行重建.分别在水模以及人体上进行了实验,将加速序列图像与不加速序列图像进行对比,结果验证了重建算法的有效性,表明该方法可以在保障图像质量以及准确测量心脏功能的前提下成倍节省扫描时间.  相似文献   

15.
Parallel imaging plays an important role to reduce data acquisition time in magnetic resonance imaging (MRI). Under-sampled non-Cartesian trajectories accelerate the MRI scan time, but the resulting images may have aliasing artifacts. To remove these artifacts, a variety of methods have been developed within the scope of parallel imaging in the recent past. In this paper, the use of Eigen-vector-based iterative Self-consistent Parallel Imaging Reconstruction Technique (ESPIRiT) along with self-calibrated GRAPPA operator gridding (self-calibrated GROG) on radial k-space data for accelerated MR image reconstruction is presented. The proposed method reconstructs the solution image from non-Cartesian k-space data in two steps: First, the acquired radial data is gridded using self-calibrated GROG and then ESPIRIT is applied on this gridded data to get the un-aliased image. The proposed method is tested on human head data and the short-axis cardiac radial data. The quality of the reconstructed images is evaluated using artifact power (AP), root-mean-square error (RMSE) and peak signal-to-noise ratio (PSNR) at different acceleration factors (AF). The results of the proposed method (GROG followed by ESPIRiT) are compared with GROG followed by pseudo-Cartesian GRAPPA reconstruction approach (conventionally used). The results show that the proposed method provides considerable improvement in the reconstructed images as compared to conventionally used pseudo-Cartesian GRAPPA with GROG, e.g., 87, 67 and 82% improvement in terms of AP for 1.5T, 3T human head and short-axis cardiac radial data, 63, 45 and 57% improvement in terms of RMSE for 1.5T, 3T human head and short-axis cardiac radial data, 11, 7 and 9% improvement in terms of PSNR for 1.5T, 3T human head and short-axis cardiac radial data, respectively, at AF = 4.  相似文献   

16.
Joint estimation of coil sensitivities and output image (JSENSE) is a promising approach that improves the reconstruction of parallel magnetic resonance imaging (pMRI). However, when acceleration factor increases, the signal to noise ratio (SNR) of JSENSE reconstruction decreases as quickly as that of the conventional pMRI. Although sparse constraints have been used to improve the JSENSE reconstruction in recent years, these constraints only use the sparsity of the output image, which cannot fully exploit the prior information of pMRI. In this paper, we use the sparsity of coil images, instead of the output image, to exploit more prior information for JSENSE. Numerical simulation, phantom and in vivo experiments demonstrate that the proposed method has better performance than the SparseSENSE method and the constrained JSENSE method using the sparsity of the output image only.  相似文献   

17.
Improved matrix inversion in image plane parallel MRI   总被引:1,自引:0,他引:1  
A new 3D parallel magnetic resonance imaging (MRI) method named Generalized Unaliasing Incorporating Support constraint and sensitivity Encoding (GUISE) is presented. GUISE allows direct image recovery from arbitrary Cartesian k-space trajectories. However, periodic k-space sampling patterns are considered for reconstruction efficiency. Image recovery methods such as 2D SENSE (SENSitivity Encoding) and 2D CAIPIRINHA (Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration) are special instances of GUISE where specific restrictions are placed on the k-space sampling patterns used. It is shown that the sampling pattern has large impacts on the image reconstruction error due to noise. An efficient sampling pattern design method that incorporates prior knowledge of object support and coil sensitivity profile is proposed. It requires no experimental trials and could be used in clinical imaging. Comparison of the proposed sampling pattern design method with 2D SENSE and 2D CAIPIRINHA are made based on both simulation and experiment results. It is seen that this new adaptive sampling pattern design method results in a lower noise level in reconstructions due to better exploitation of the coil sensitivity variation and object support constraint. In addition, elimination of the non-object region from reconstruction potentially allows an acceleration factor higher than the number of receiver coils used.  相似文献   

18.
Three-dimensional (3D) twisted projection imaging (TPI) trajectory has a unique advantage in sodium (23Na) imaging on clinical MRI scanners at 1.5 or 3 T, generating a high signal-to-noise ratio (SNR) with a short acquisition time (∼10 min). Parallel imaging with an array of coil elements transits SNR benefits from small coil elements to acquisition efficiency by sampling partial k-space. This study investigates the feasibility of parallel sodium imaging with emphases on SNR and acceleration benefits provided by the 3D TPI trajectory. Computer simulations were used to find available acceleration factors and noise amplification. Human head studies were performed on clinical 1.5/3-T scanners with four-element coil arrays to verify simulation outcomes. In in vivo studies, proton (1H) data, however, were acquired for concept–proof purpose. The sensitivity encoding (SENSE) method with the conjugate gradient algorithm was used to reconstruct images from accelerated TPI-SENSE data sets. Self-calibration was employed to estimate coil sensitivities. Noise amplification in TPI-SENSE was evaluated using multiple noise trials. It was found that the acceleration factor was as high as 5.53 (corresponding to acceleration number 2×3, ring-by-rotation), with a small image error of 6.9% when TPI projections were reduced in both polar (ring) and azimuthal (rotation) directions. The average noise amplification was as low as 98.7%, or 27% lower than Cartesian SENSE at that acceleration factor. The 3D nature of both TPI trajectory and coil sensitivities might be responsible for the high acceleration and low noise amplification. Consequently, TPI-SENSE may have potential advantages for parallel sodium imaging.  相似文献   

19.
In parallel magnetic resonance imaging (MRI), the problem is to reconstruct an image given the partial K-space scans from all the receiver coils. Depending on its position within the scanner, each coil has a different sensitivity profile. All existing parallel MRI techniques require estimation of certain parameters pertaining to the sensitivity profile, e.g., the sensitivity map needs to be estimated for the SENSE and SMASH and the interpolation weights need to be calibrated for GRAPPA and SPIRiT. The assumption is that the estimated parameters are applicable at the operational stage. This assumption does not always hold, consequently the reconstruction accuracies of existing parallel MRI methods may suffer. We propose a reconstruction method called Calibration-Less Multi-coil (CaLM) MRI. As the name suggests, our method does not require estimation of any parameters related to the sensitivity maps and hence does not require a calibration stage. CaLM MRI is an image domain method that produces a sensitivity encoded image for each coil. These images are finally combined by the sum-of-squares method to yield the final image. It is based on the theory of Compressed Sensing (CS). During reconstruction, the constraint that "all the coil images should appear similar" is introduced within the CS framework. This leads to a CS optimization problem that promotes group-sparsity. The results from our proposed method are comparable (at least for the data used in this work) with the best results that can be obtained from state-of-the-art methods.  相似文献   

20.
Combination of non-Cartesian trajectories with parallel MRI permits to attain unmatched acceleration rates when compared to traditional Cartesian MRI during real-time imaging. However, computationally demanding reconstructions of such imaging techniques, such as k-space domain radial generalized auto-calibrating partially parallel acquisitions (radial GRAPPA) and image domain conjugate gradient sensitivity encoding (CG-SENSE), lead to longer reconstruction times and unacceptable latency for online real-time MRI on conventional computational hardware. Though CG-SENSE has been shown to work with low-latency using a general purpose graphics processing unit (GPU), to the best of our knowledge, no such effort has been made for radial GRAPPA. Radial GRAPPA reconstruction, which is robust even with highly undersampled acquisitions, is not iterative, requiring only significant computation during initial calibration while achieving good image quality for low-latency imaging applications. In this work, we present a very fast, low-latency, reconstruction framework based on a heterogeneous system using multi-core CPUs and GPUs. We demonstrate an implementation of radial GRAPPA that permits reconstruction times on par with or faster than acquisition of highly accelerated datasets in both cardiac and dynamic musculoskeletal imaging scenarios. Acquisition and reconstruction times are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号