首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
李岩  陈庆永  姜宏伟  王艾玲  郑鹉 《物理学报》2006,55(12):6647-6650
采用磁控溅射的方法制备了一组以(Ni0.81Fe0.19)1-xCrx作为缓冲层的NiFe/PtMn双层膜样品,研究了NiFe/PtMn双层膜的形成过程和热稳定性.实验表明,Cr成分的不同会引起NiFe/PtMn双层膜中PtMn层晶粒尺寸的不同,使NiFe/PtMn双层膜的交换偏置场与PtMn层厚度之间呈现不同的变化关系.热稳定性实验表明,PtMn晶粒尺寸较大的样品,出现交换偏置现象所需要的临界厚度较小,热稳定性好,这与Mauri的理论模型一致. 关键词: NiFe/PtMn双层膜 交换偏置场 热稳定性  相似文献   

2.
We have studied the static and dynamic responses of three (62, 115 and 308 nm thick) Permalloy (Ni0.81Fe0.19) films by DC magnetization, ferromagnetic resonance and magnetic force microscopy. The thickest film presents very regular stripe domains with widths slightly smaller than the film thickness. Ferromagnetic resonance performed on the thinnest film shows one absorption peak when the field is applied along the film plane, and more than one in the other samples. These multiple absorptions are analogous to the high frequency susceptibility peaks observed at zero field in Permalloy films above the critical thickness reported previously by other authors.  相似文献   

3.
The peculiarities of absorption of rf electromagnetic radiation (ferromagnetic resonance) in multilayer NiFe/Ni0.65Cu0.35(d)/CoFe structures in a wide temperature range are analyzed. It is shown that the type of interaction of the NiFe and CoFe ferromagnetic films via a “weak” ferromagnetic Ni0.65Cu0.35 interlayer changes from antiferromagnetic to ferromagnetic upon cooling and a decrease in interlayer thickness d. The detected temperature dependence of the interlayer interaction indicates the possibility of observation of a strong magnetocaloric effect in the structures under investigation.  相似文献   

4.
In this paper, we report a preparation of multiferroic heterostructure from thin film of Ni–Mn–Ga (NMG) alloy and lead magnesium niobate–lead titanate (PMN–PT) with effective magnetoelectric (ME) coupling between the film as ferromagnetic material and PMN–PT as piezoelectric material. The heterostructure was prepared by relatively low temperature (400 °C) deposition of the film on single crystal of piezoelectric PMN–PT substrate using rf magnetron co-sputtering of Ni50Mn50 and Ni50Ga50 targets. Magnetic measurements by Superconducting Quantum Interference Design (SQIUD) Magnetometer and Vibrating Sample Magnetometer (VSM) on the film revealed that the film is in ferromagnetically ordered martensitic state at room temperature with saturation magnetization of ∼240 emu/cm3 and Curie temperature of ∼337 K. Piezoresponse force microscopy (PFM) measurement done at room temperature on the substrate showed the presence of expected hysteresis loop confirming the stability of the piezoelectric state of the substrate after deposition. Room temperature ME voltage coefficient (αME) of the heterostructure was measured as a function of applied bias dc magnetic field in Longitudinal–Transverse (L–T) ME coupling mode by lock-in technique. A maximum ME coefficient αME of 3.02 mV/cm Oe was measured for multiferroic NMG/PMN–PT heterostructure which demonstrates that there is ME coupling between the film as ferromagnetic material and PMN–PT as piezoelectric material.  相似文献   

5.
The spectrum of standing spin waves has been detected by the ferromagnetic resonance method in NiFe(740 Å)/Cu/NiFe(740 Å) three-layered film structure in the perpendicular configuration for the copper thickness d Cu ≤ 30 Å. At thicknesses d Cu > 30 Å, the resonance absorption curve is a superposition of two spinwave resonance spectra from individual ferromagnetic NiFe layers. For Co/Pd multilayer films, united spinwave responance spectra have also been observed at thicknesses of the paramagnetic palladium layer up to d Pd < 30 Å. The partial exchange stiffness has been calculated for a spin wave propagating across the Pd layer (A Pd = 0.1 × 10?6 erg/cm). This value is always positive (up to the critical thickness of the palladium interlayer d Pd < d c) or equal to zero (d Pd > d c).  相似文献   

6.
Ferromagnetic half metallicity with a high spin polarization of 100% was predicted in the bulk Ni0.5Cu0.5O using density-functional theory method. The band gap of majority spin is 3.45 eV for Ni0.5Cu0.5O. The density of states of minority spin at the Fermi level are mainly from Cu 3d and O 2p in the Ni0.5Cu0.5O. The magnetic moments are from Ni 3d states. Ni0.5Zn0.5O and Ni0.5Cd0.5O systems are ferromagnetic insulators, but the magnetic moment of Ni2+ ions is enhanced by the Zn and Cd incorporation. Therefore, Ni0.5Cu0.5O is the potential candidate for spintronics devices because of the predicted high spin polarization.  相似文献   

7.
We present a study of ferromagnetic resonance in amorphous FexNi80-xP14B6 for Fe concentrations down to that required for ferromagnetism. The resonance was studied at microwave frequencies between 10 and 35 GHz and at temperatures between 2 and 300 K. We find i) in accord with previous data on amorphous ferromagnets, each alloy investigated is magnetically inhomogeneous even in its ferromagnetic state, ii) the intrinsic relaxation parameter λ / Mγ for each alloy falls between the value for pure Fe and the value for pure Ni, iii) a low temperature linewidth rise which is frequency independent and follows an empirical form suggested earlier, iv) frequency dependent linewidth maxima at low T which do not correspond to low field spin freezing temperatures, and v) anisotropy fields intruding at low temperatures. The corresponding anisotropy energy is similar to that proposed for spin glasses as are the temperature and frequency dependences of the anisotropy constant. With part II of this paper, this represents the most complete resonance study to date of the evolution of spin glass behavior in Fe based alloys.  相似文献   

8.
《Current Applied Physics》2014,14(4):548-551
This study examined the magnetization reversal effects on low-field microwave absorption in a Fe91.6B2.5N5.9 single layered film with in-plane uniaxial magnetic anisotropy and a multi-layered film with giant magnetoresistivity using ferromagnetic resonance measurements at 9.84 GHz. Two different kinds of absorption modes were observed at near zero dc field and high dc field. The signals at high-field showed all the features of ferromagnetic resonance due to spin precession. However, the absorption signals at low-field should be associated with the switching field at unsaturated magnetic field region.  相似文献   

9.
Samples of nanocomposite multiferroics have been synthesized by implantation of Co+, Fe+, and Ni+ ions with an energy of 40 keV into ferroelectric barium titanate plates to doses in the range (0.5–1.5) × 1017 ions/cm2. It has been found that nanoparticles of metallic iron, cobalt, or nickel are formed in the barium titanate layer subjected to ion bombardment. With an increase in the implantation dose, the implanted samples sequentially exhibit superparamagnetic, soft magnetic, and, finally, strong ferromagnetic properties at room temperature. The average sizes of ion-synthesized 3d-metal nanoparticles vary in the range from 5 to 10 nm depending on the implantation dose. Investigation of the orientation dependence of the magnetic hysteresis loops has demonstrated that the samples show a uniaxial (“easy plane”) magnetic anisotropy typical of thin granular magnetic films. Ferromagnetic BaTiO3: 3d metal samples are characterized by a significant shift of the ferromagnetic resonance signal in an external electric field, as well as by a large (in magnitude) magnetodielectric effect at room temperature. These results indicate that there is a strong magnetoelectric coupling between the ferroelectric barium titanate matrix and ion-synthesized nanoparticles of magnetic metals.  相似文献   

10.
The voltage control of magnetism has attracted intensive attention owing to the abundant physical phenomena associated with magnetoelectric coupling. More importantly, the techniques to electrically manipulate spin dynamics, such as magnetic anisotropy and ferromagnetic resonance, are of great significance because of their potential applications in high-density memory devices, microwave signal processors, and magnetic sensors. Recently, voltage control of spin waves has also been demonstrated in several multiferroic heterostructures. This development provides new platforms for energyefficient, tunable magnonic devices. In this review, we focus on the most recent advances in voltage control of ferromagnetic resonance and spin waves in magnetoelectric materials and discuss the physical mechanisms and prospects for practical device applications.  相似文献   

11.
We have investigated the ferromagnetic resonance spectra of an exchange-biased Ni80Fe20/CoO bilayer between room temperature and 4 K. Primary attention has been paid to the effect of the antiferromagnetic CoO film on the temperature-dependent resonance field shift of the ferromagnetic Ni80Fe20 film with respect to that of an unbiased film. At low temperatures, the field shift with the magnetic field applied perpendicular to the plane was determined to be more than twice the magnitude of the parallel field shift, and of the same sign, while an unoxidized single ferromagnetic film has much smaller parallel and perpendicular low-temperature shifts (here defined with respect to room temperature) of opposite sign. This observation implies that the anisotropy axis can rotate with the applied field, provided that the primary cause of the anisotropy is the interaction between the adjacent ferromagnetic and antiferromagnetic films. Since the perpendicular shift is more than a factor of two larger than the parallel field shift, the rotatable anisotropy is, in fact, anisotropic in this bilayer.  相似文献   

12.
The spin-Seebeck effect (SSE) converts a heat current into a spin current, a flow of spin angular momentum, and spin voltage, the driving force for nonequilibrium spin currents, in a ferromagnetic metal. In this study, the SSE in a ferromagnetic Ni81Fe19 film has been investigated by means of the inverse spin-Hall effect (ISHE) in a Pt film at room temperature. The experimental results measured in the Ni81Fe19/Pt system show that the sign of the thermally induced spin voltage is reversed between the higher- and lower-temperature ends of the Ni81Fe19 film. The ISHE in the Pt film allows us to detect the SSE signal with high sensitivity and to separate it from extrinsic thermoelectric effects.  相似文献   

13.
《Current Applied Physics》2014,14(2):171-175
We report valence and conduction band offset measurements in a pulsed laser deposited Ni0.07Zn0.93O/ZnO heterostructure using X-ray photoelectron spectroscopy, valence band spectroscopy and ultraviolet visible spectroscopy. Neglecting the strain effect, the valence band offset was estimated to be 0.32 eV and the conduction band offset comes out to be −0.23 eV. Ratio between conduction band and valence band offset is 0.72. Core level shifting due to Ni doping has also been explained. Magnetotransport study of Ni0.07Zn0.93O film reveals that the charge carriers might be spin polarized at the interface of the heterojunction.  相似文献   

14.
Expressions are obtained for the symmetric anomalous conductivity tensor of ferromagnetic alloys based on 3d-transition metals. The contribution to anomolous conductivity of scattering on structural disorder is evaluated, and a numerical calculation of longitudinal and transverse components of the conductivity and magnetoresistance tensors is performed for Ni0.81P0.19 and Fe0.87B0.13. The results obtained agree satisfactorily with experiment.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 57–62, November, 1989.  相似文献   

15.
The intramolecular electron spin exchange has been studied by electron paramagnetic resonance (EPR) spectroscopy in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) for various nitroxide biradicals as a function of temperature and the nature of the connecting bridge between two >NO· centers. Temperature variations of the isotropic nitrogen hyperfine splitting constant a and exchange integral values |J/a| were measured from EPR spectra and analyzed. Thermodynamic parameters of the conformational rearrangements were obtained. The spin exchange in rigid and flexible biradicals dissolved in the ionic liquid bmimPF6 was compared with that in toluene solutions. Interesting features of the spin exchange in biradicals in ionic liquid were observed and explained as a result of the specific intramolecular conformational transitions. The first example of a rather rigid biradical molecule becoming flexible under the influence of an ionic liquid is reported.  相似文献   

16.
李岩  陈庆永  姜宏伟 《物理学报》2006,55(5):2543-2547
将NiFe/PtMn双层膜生长在(Ni0.81Fe0.19)1-xCrx种子层材料上,通过改变种子层中Cr的原子含量,系统的研究了NiFe/PtMn双层膜中PtMn晶粒尺寸和织构对交换偏置的影响.对退火270℃,5h后的NiFe/PtMn双层膜磁性的研究表明,PtMn织构强弱对交换偏置场的影响不明显,而PtMn的晶粒尺寸是影响交换偏置场的主要因素,PtMn颗粒的相干长度在11.3nm左右时得到了较大的交换偏置场. 关键词: NiFe/PtMn双层膜 交换偏置场  相似文献   

17.
Nuclear magnetic resonance of cobalt metal was investigated in the paramagnetic and ferromagnetic states and in the critical region below Tc. The Knight shift and spin lattice relaxation times were measured in the paramagnetic phase in the solid and liquid states from 1578 K to 1825 K. The resonant frequency, spin-lattice and spin-spin relaxation times were measured in the ferromagnetic phase from room temperature to 1385 K. The main part of (T1T)-1 results from fluctuating orbital moments in both phases except near Tc where this process forms the background for critical spin relaxation. The critical exponents for T-11 and for the magnetization in the ferromagnetic state were found to be n' = 0.96 ± 0.07 and β = 0.308 ± 0.012, respectively.  相似文献   

18.
The magnetic properties of the Co38Ni34Al28 alloy have been studied. The alloy exhibits a first order austenite-martensite phase transition in the temperature region between 155 and 247 K. A strain of 0.07% is produced across this phase transition. The Arrott plots obtained from the isothermal magnetic field dependence of magnetization indicate the presence of spontaneous magnetization both in the austenite and martensite phases, confirming the ferromagnetic character of the alloy up to room temperature. The temperature dependence of the high field magnetization indicates the presence of spin wave excitations, spin wave excitation gap and spin wave-spin wave interactions in the martensite phase. The magnetic anisotropy energy constant for the Co38Ni34Al28 alloy is estimated both with the help of the standard law of approach to saturation of magnetization, and also from the field dependence of magnetization using the field for technical saturation of magnetization. The temperature dependences of these energy terms are compared. The estimated values of the magnetic anisotropy constant seem to be in agreement with the magnitude of the spin wave excitation gap estimated from the temperature dependence of high field magnetization.  相似文献   

19.
The influence of NiO addition on the magnetic properties of polycrystalline Y3Fe5O12 is studied for the saturation magnetization, Curie temperature, initial magnetic permeability and ferromagnetic resonance line width. Dependence of saturation magnetization on NiO addition suggest that Ni2+ ions enter octahedral sites of the garnet lattice. Real part of the complex initial permeability versus temperature curves reveal the single phase for samples with NiO content. The absence of any additional peak in these curves and the invariance of Curie temperature suggest that NiO addition cannot alter the magneto-crystalline anisotropy of the material. Variations of initial permeability with NiO content are due to change of saturation magnetization and grain size of the materials. The ferromagnetic resonance line width varies linearly with the porosity of samples with NiO showing no anisotropy contribution in it.  相似文献   

20.
The magnetic properties of one-dimensional oriented nanowires Ge0.99Co0.01 grown in pores of anodized aluminum oxide membranes are investigate using ferromagnetic resonance spectroscopy. The electron spin resonance signals of the magnetically ordered cobalt subsystem and the charge-carrier subsystem are identified. It is revealed that the anisotropy field at 4 K is equal to 400 Oe and aligned parallel to the nanowire axis. The transverse relaxation time of spin waves at 4 K is estimated to be ~10?10 s. It is shown that the magnetic properties of nanowires are predominantly determined by the ferromagnetism of Co and GeCo alloy clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号