首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A hydroxamic acid (HL) containing benzo-15-crown-5 and their copper(II), zinc(II), cobalt(II) and manganese(II) complexes have been synthesized and studied as catalysts for the cleavage of bis(4-nitrophenyl)phosphate (BNPP). The catalytic properties of these complexes and the kinetics and mechanism of BNPP hydrolysis have been investigated. The kinetic mathematical model of BNPP cleavage catalyzed by these complexes has been proposed. The effects of reaction temperature and metal ion in the complexes on the rate of BNPP catalytic hydrolysis have been discussed. The results show that the hydroxamic acid complexes containing benzo-15-crown-5 exhibit high activity in the BNPP catalyzed hydrolysis; the pseudo-first-order-rate constants of BNPP hydrolysis catalyzed by the complexes increase along with the increases of pH of the buffer solution from 7.50 to 9.50; the activity of different metal ions decreases in the order: Co2+ > Cu2+ > Zn2+ > Mn2+; the pseudo-first-order-rate constants of BNPP hydrolysis catalyzed by the complexes is 2.24 × 105 ~ 3.24 × 105 times as large as that of spontaneous hydrolysis of BNPP.  相似文献   

2.
Aqueous copper(II) N,N',N' '-trimethyl-cis,cis-1,3,5-triaminocyclohexane (Cu(tach-Me(3))(2+)(aq)) promotes the hydrolysis of activated phosphate diesters in aqueous medium at pH 7.2. This complex is selective for cleavage of the phosphate diester sodium bis(p-nitrophenyl) phosphate (BNPP), the rate of hydrolysis of the monoester disodium p-nitrophenyl phosphate being 1000 times slower. The observed rate acceleration of BNPP hydrolysis is slightly greater than that observed for other Cu(II) complexes, such as [Cu([9]aneN(3))Cl(2)] ([9]aneN(3) identical with 1,4,7-triazacyclononane). The rate of hydrolysis is first-order in phosphate ester at low ester concentration and second-order in [Cu(tach-Me(3))](2+)(aq), suggesting the involvement of two metal complexes in the mechanism of substrate hydrolysis. The reaction exhibits saturation kinetics with respect to BNPP concentration according to a modified Michaelis-Menten mechanism: 2CuL + S <==> LCu-S-CuL --> 2CuL + products (K(M) = 12.3 +/- 1.8 mM(2), k(cat) = (4.0 +/- 0.4) x 10(-)(4) s(-1), 50 degrees C) where CuL (triple bond) [Cu(tach-Me(3))](2+), S (triple bond) BNPP, and LCu-S-CuL is a substrate-bridged dinuclear complex. EPR data indicate that the dicopper complex is formed only in the presence of BNPP; the active LCu-S-CuL intermediate species then slowly decays to products, regenerating monomeric CuL.  相似文献   

3.
The catalytic hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and p-nitrophenyl phosphate (NPP) by metallomicelles composed of Cu(II) or Zn(II) complexes of bispyridine-containing alkanol ligands in CTAB micellar solution was investigated at 30 degrees C. The experimental results indicate that the complexes with a 1:1 ratio of ligands to metal ions for ligands 1 (1,7-bis(6-hydroxymethyl-2-pyridyl)-2,6-dioxaheptane) and 3 (1,4-bis[(6-hydroxymethyl-2-pyridyl)-2-oxapropyl]benzene) and a 1:2 ratio of ligands to metal ions for ligand 2 (1,14-bis(6-hydroxymethyl-2-pyridyl)-2,13-dioxatetradecane) in CATB micellar solution are the active species for the catalytic hydrolysis of BNPP and NPP, respectively. The ternary complex kinetic model for metallomicellar catalysis was employed to obtain the relative kinetic and thermodynamic parameters, which demonstrated the catalytic mechanism for the hydrolysis of BNPP and NPP by metallomicelles.  相似文献   

4.
The activities of the catalytic hydrolysis of phosphate diester(BNPP)[bis(p-nitrophenyl)phosphate diester]and plasmid DNA (pUC18)by mononuclear macrocyclic polyamine metal complexes have been investigated in this paper.The results showed that the highest activity in hydrolysis of BNPP was obtained with 1e-Zn(Ⅱ)complex(composed of lipophilic group)as catalyst.The hydrolysis rate enhancement is up to 3.64×10~4 fold.These metal complexes could effectively promote the cleavage of plasmid DNA(pUC18)at physiol...  相似文献   

5.
The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms.  相似文献   

6.
A macrocyclic ligand was synthesized and characterized. The kinetics of hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) in the catalytic system containing macrocyclic ligand and praseodymium(III) was investigated. The analysis of specific absorption spectrums of the hydrolytic reaction systems indicated that key intermediates made up of BNPP and praseodymium(III) complexes are formed in the reaction process of BNPP catalytic hydrolysis. In this, the mechanism of BNPP catalytic hydrolysis proposed is based on the analytic result of specific absorption spectrum, and the corresponding kinetic constants are calculated. The results showed that the praseodymium(III) complexes as hydrolase mimics exhibit good catalytic activity and similar catalytic character to natural enzyme.  相似文献   

7.
Tunell I  Lim C 《Inorganic chemistry》2006,45(12):4811-4819
Many of the group IA and IIA metal ions, such as Na+, K+, Mg2+, and Ca2+, play crucial roles in biological functions. Previous theoretical studies generally focus on the number of water molecules bound to a particular (as opposed to all) alkali or alkaline earth cations and could not establish a single preferred CN for the heavier alkali and alkaline earth ion-water complexes. Crystal structures of hydrated Na+, K+, and Rb+ also cannot establish the preferred number of inner-shell water molecules bound to these cations. Consequently, it is unclear if the gas-phase CNs of group IA metal hydrates increase with increasing ion size, as observed for the group IIA series from the Cambridge Structural Database, and if the same factors govern the gas-phase CNs of both group IA and IIA ion-water complexes. Thus, in this work, we determine the number of water molecules directly bound to the series of alkali (Li+, Na+, K+, and Rb+) and alkaline earth (Be2+, Mg2+, Ca2+, Sr2+, and Ba2+) metal ions in the gas phase by computing the free energy for forming an isolated metal-aqua complex as a function of the number of water molecules at 298 K. The preferred gas-phase CNs of group IA hydrates appear insensitive to the ion size; they are all 4, except for Rb+, where a CN of 6 seems as likely. In contrast, the preferred gas-phase CNs of the group IIA dications increase with increasing ion size; they are 4 for Be2+, 6 for Mg2+ and Ca2+, and 7 for Sr2+ and Ba2+. An entropic penalty disfavors a gas-phase CN greater than 4 for group IA hydrates, but it does not dictate the gas-phase CNs of group IIA hydrates. Instead, interactions between the metal ion and first-shell water molecules and between first-shell and second-shell water molecules govern the preferred gas-phase CNs of the group IIA metal hydrates.  相似文献   

8.
Chang CA  Wu BH  Kuan BY 《Inorganic chemistry》2005,44(19):6646-6654
We have been interested in the design, synthesis, and characterization of artificial nucleases and ribonucleases by employing macrocyclic lanthanide complexes because their high thermodynamic stability, low kinetic lability, high coordination number, and charge density (Lewis acidity) allow more design flexibility and stability. In this paper, we report the study of the use of the europium(III) complex, EuDO2A+ (DO2A is 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane) and other lanthanide complexes (i.e., LaDO2A+, YbDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA where K21DA is 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid, EDDA is ethylenediamine-N,N'-diacetic acid, and HEDTA is N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid), as potential catalysts for the hydrolysis of the phosphodiester bond of BNPP (sodium bis(4-nitrophenyl)-phosphate). For the pH range 7.0-11.0 studied, EuDO2A+ promotes BNPP hydrolysis with the quickest rates among LaDO2A+, EuDO2A+, and YbDO2A+. This indicates that charge density is not the only factor affecting the reaction rates. Among the four complexes, EuDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA, with their respective number of inner-sphere coordinated water molecules three, two, five, and three, EuEDDA+, with the greatest number of inner-sphere coordinated water molecules and a positive charge, promotes BNPP hydrolysis more efficiently at pH below 8.4, and the observed rate trend is EuEDDA+ > EuDO2A+ > EuK21DA+ > EuHEDTA. At pH > 8.4, the EuEDDA+ solution becomes misty and precipitates form. At pH 11.0, the hydrolysis rate of BNPP in the presence of EuDO2A+ is 100 times faster than that of EuHEDTA, presumably because the positively charged EuDO2A+ is more favorable for binding with the negatively charged phosphodiester compounds. The logarithmic hydrolysis constants (pKh) were determined, and are reported in the parentheses, by fitting the kinetic k(obs) data vs pH for EuDO2A+ (8.4), LaDO2A+ (8.4), YbDO2A+ (9.4), EuK21DA+ (7.8), EuEDDA+ (9.0), and EuHEDTA (10.1). The preliminary rate constant-[EuDO2A+] data at pH 9.35 were fitted to a monomer-dimer reaction model, and the dimer rate constant is 400 times greater than that of the monomer. The fact that YbDO2A+ catalyzes BNPP less effectively than EuDO2A+ is tentatively explained by the formation of an inactive dimer, [Yb(DO2A)(OH)]2, with no coordination unsaturation for BNPP substrate binding.  相似文献   

9.
Formation constants (ML) of 1 : 1 19-crown-6 (19C6) complexes with mono- (M+) and bivalent metal ions (M2+) were determined in water at 25 °C by conductometry. The KML value of 19C6 for M+ and M2+ decreases in the order Rb+ K+ > Tl+ > Na+ = Ag+ > Li+ Cs+ and Pb2+ > Ba2+ > Sr2+ > Cd2+ > Ca2+, respectively. The selectivity for the neighboring alkali metal ions in the periodic table is lower for 19C6 than for 18-crown-6 (18C6) except for the case of Rb+ and Cs+. The same is true for the alkaline earth metal ions. Generally, the KML values of 19C6 with M2+ are greater than those with M+. For Na+ and the ions which are smaller in size than Na+ (Li+, Ca2+, Cd2+), the KML value is larger for 19C6 than for 18C6, but the contrary holds for all the other ions of larger sizes than Na+. The limiting ionic molar conductivity (°) of the 19C6–K+ complex in water at 25 °C was determined to be 43. Although 19C6 is larger than 18C6, the 19C6–K+ complex is much more mobile in water than the 18C6–K+ complex.  相似文献   

10.
Zn(II) binding by the dipyridine-containing macrocycles L1-L3 has been analyzed by means of potentiometric measurements in aqueous solutions. These ligands contain one (L1, L2) or two (L3) 2,2'-dipyridine units as an integral part of a polyamine macrocyclic framework having different dimensions and numbers of nitrogen donors. Depending on the number of donors, L1-L3 can form stable mono- and/or dinuclear Zn(II) complexes in a wide pH range. Facile deprotonation of Zn(II)-coordinated water molecules gives mono- and dihydroxo-complexes from neutral to alkaline pH values. The ability of these complexes as nucleophilic agents in hydrolytic processes has been tested by using bis(p-nitrophenyl) phosphate (BNPP) as a substrate. In the dinuclear complexes the two metals play a cooperative role in BNPP cleavage. In the case of the L2 dinuclear complex [Zn(2)L2(OH)(2)](2+), the two metals act cooperatively through a hydrolytic process involving a bridging interaction of the substrate with the two Zn(II) ions and a simultaneous nucleophilic attack of a Zn-OH function at phosphorus; in the case of the dizinc complex with the largest macrocycle L3, only the monohydroxo complex [Zn(2)L3(OH)](3+) promotes BNPP hydrolysis. BNPP interacts with a single metal, while the hydroxide anion may operate a nucleophilic attack. Both complexes display high rate enhancements in BNPP cleavage with respect to previously reported dizinc complexes, due to hydrophobic and pi-stacking interactions between the nitrophenyl groups of BNPP and the dipyridine units of the complexes.  相似文献   

11.
5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane (L) was synthesized and characterized. The kinetics of hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) in the catalytic system containing macrocyclic ligand and cerium(III) was investigated. This catalytic system show high catalytic activity and better reproducibility and stability than other similar systems in the range of pH of around 5.6–7.2. The stoichiometry and spectral analysis showed that the real active species is the macrocyclic complex of cerium(III). Based on the analytical results of the specific absorption spectra, an intramolecular nucleophilic substitution mechanism for the catalytic hydrolysis of BNPP is proposed, a correlative kinetic mathematical model is established, and the corresponding thermodynamic and kinetic constants are calculated.  相似文献   

12.
A simple and fast method for simultaneous separation of nine metal cations Ni2+, Cu2+, Co2+, Zn2+ Cd2+, K+, Na+, Mg2+ and Ca2+, and NH4+ in methanol is reported. The optimization for separation these 10 cations was achieved by using 0.5% acetic acid and 10 mM imidazole as electrolyte. The effects of water and ionic strength in the sample are discussed. The sensitive detection of transition metal ions was accomplished at 191 nm. The optimized method demonstrated high efficiency and good reproducibility, and was applied successfully to the qualitative and quantitative determination of transition metal ions in water samples, chemical reagents, oral zinc gluconate solution and human plasma.  相似文献   

13.
The paper presents results of investigation of exchange of the clinoptilolite tuff cations with hydrogen ions from HCl solution of concentration 0.1 mmol cm(-3) and ammonium ions solutions of concentrations 0.0071 to 2.6 mmol cm(-3). Molal concentrations, x (mmol g(-1)) of cations exchanged in acid solution and in ammonium ions solutions were compared with molal concentrations of cations obtained by determination of the cation-exchange capacity of clinoptilolite tuff. The obtained results show that at ammonium ion concentrations lower than 0.1 mmol cm(-3), with regard to exchange capacity for particular ions, best exchanged are Na+ ions, followed by Mg2+ and Ca2+ ions, while exchange of K+ ions is the poorest (Na+ > Mg2+ > Ca2+ > K+). At ammonium concentrations from 0.2 to 1 mmol cm(-3) the order is Na+ > Ca2+ > Mg2+ > K+. At concentrations higher than 1 mmol cm(-3) the order is Na+ > Ca2+ > K+ > Mg2+. The results are a consequence of the uptake of hydrogen ions by zeolite samples in ammonium ions solutions at concentrations lower than 1 mmol cm(-3) and indicate the importance of Mg2+ (besides Na+ ions) for the exchange between clinoptilolite cations and H+ ions, in contrast to K+ ions, whose participation in the reaction with H+ ions is the lowest. During decationization of the clinoptilolite in acid solution, best exchanged are Na+, Mg2+, and Ca2+ ions, while exchange of K+ ions is the poorest. Due to poor exchange of K+ and H+ ions and good exchange of Na+, Mg2+, and Ca2+ ions, it is to be assumed that preservation of stability of the clinoptilolite structure is caused by K+ ions present in the channel C. Clinoptilolite is dissolved in the clinoptilolite A and B channels where Na+, Mg2+, and Ca2+ ions are present. On the acid-modified clinoptilolite samples, exchange of ammonium ions is poorer than on natural zeolite. The longer the contact time of the zeolite and acid solution, the worse ammonium ions exchange. It can be assumed that H+ ions exchanged with zeolite cations are consumed for solution of aluminum in the clinoptilolite structure; therefore the concentration of H+ ions as exchangeable cations decreases. In the ammonium ion solution at a concentration of 0.0065 mmol cm(-3), from the acid-modified zeolite samples, Al3+ ions are exchanged best, followed by Na+, Mg2+, Ca2+, and K+ ions. Further to the results, it is to be assumed that exchangeable Al3+ ions available from clinoptilolite dissolution are best exchanged with H+ ions in acid solution.  相似文献   

14.
A novel beta-cyclodextrin dimer, 1,10-phenanthroline-2,9-dimethyl-bridged-bis(6-monoammonio-beta-cyclodextrin) (phenBisCD, L), was synthesized. Its zinc complex (ZnL) has been prepared, characterized, and applied as a new catalyst for diester hydrolysis. The formation constant (logK(ML)=9.56+/-0.01) of the complex and deprotonation constant (pK(a)=8.18+/-0.04) of the coordinated water molecule were determined by a potentiometric pH titration at (298+/-0.1) K. Hydrolytic kinetics of carboxylic acid esters were performed with bis(4-nitrophenyl) carbonate (BNPC) and 4-nitrophenyl acetate (NA) as substrates. The obtained hydrolysis rate constants showed that ZnL has a very high rate of catalysis for BNPC hydrolysis, giving a 3.89x10(4)-fold rate enhancement over uncatalyzed hydrolysis at pH 7.01, relative to only a 42-fold rate enhancement for NA hydrolysis. Moreover, the hydrolysis second-order rate constants of both BNPC and NA greatly increases with pH. Hydrolytic kinetics of a phosphate diester catalyzed by ZnL was also investigated by using bis(4-nitrophenyl) phosphate (BNPP) as the substrate. The pH dependence of the BNPP cleavage in aqueous buffer shows a sigmoidal curve with an inflection point around pH 8.11, which was nearly identical to the pK(a) value from the potentiometric titration. The k(cat) of BNPP hydrolysis promoted by ZnL was found to be 9.9x10(-4) M(-1) s(-1), which is comparatively higher than most other reported Zn(II)-based systems. The possible intermediate for the hydrolysis of BNPP, BNPC, and NA catalyzed by ZnL is proposed on the basis of kinetic and thermodynamic analysis.  相似文献   

15.
Novel monoazacryptand-type fluorescent chemosensors, (derived from an 18-crown-6) and (derived from a 15-crown-5) both with a pyrene ring as their photoresponsive moiety, were synthesized. Their fluorescence properties for alkali metal and alkaline earth metal cations in water were then examined. The detection of metal cations was accomplished by a change in the fluorescence intensity of the host compounds, based on a photoinduced electron transfer (PET) mechanism. In aqueous solution, showed little fluorescence upon the addition of Ba2+ because of the very weak complexation with Ba2+, but the presence of micelles of polyoxyethylene(10) isooctylphenyl ether (Triton X-100) enabled to show highly sensitive and selective Ba2+ detection among alkali metal and alkaline earth metal cations. With respect to the selective fluorescent detection of important metal cations (Na+, K+, Mg2+, Ca2+) relevant to living organisms, was found to detect K+ with high selectivity in aqueous micellar solutions of polyoxyethylene(20) sorbitan monostearate (Tween-60). The selectivity for metal cations was mainly dependent on the goodness of fit of the host cavity and the metal cation size. In the presence of anionic surfactants, detected alkaline earth metal cations more effectively than alkali metal cations.  相似文献   

16.
A fluorescent probe, PyCalix, which has two pyrene moieties at the lower rim of a calix[4]arene fixed in the cone conformation was synthesized and its complexation behavior with alkali and alkaline earth cations was studied by fluorescence spectrometry. The compound showed intramolecular excimer emission at approximately 480 nm in the fluorescence spectra. Upon complexation with alkaline earth metal cations, a decrease of excimer emission was observed. The decrease of excimer emission was accompanied by an increase of monomer emission of pyrenes at 397 nm. The order of complexation constants of PyCalix with metal ions was Sr(+ approximately Ca2+ > Ba2+ > Mg2+ > K+ > Na+ > Cs+ for all reagents. PyCalix doped polyvinyl chloride (PVC) membrane was fabricated and our results showed that this membrane can be used for selective detection of Sr2+.  相似文献   

17.
The intramolecular nucleophilic substitution of an activated phosphate diester, bis(p-nitrophenyl) phosphate (BNPP) as the nucleic acids substitute, was investigated. A macro-cyclic ligand and the corresponding Cu (II) and Ni (II) complexes were synthesized and characterized. The metallomicelles made up of macrocyclic divalent metal complex and micelle, as mimic hydrolytic metalloenzyme, was used in BNPP catalytic hydrolysis. The metallomicelles displayed higher catalytic activity although they do not attain the catalytic efficiency of enzymes. The analysis of specific absorption spectra showed that the course of the BNPP catalytic reaction was different from that of the BNPP spontaneous hydrolysis, and was an intramolecular nucleophilic substitution reaction. Based on the analytic result of the specific absorption spectrum, an intramolecular nucleophilic substitution mechanism of BNPP catalytic hydrolysis was proposed and a correlative kinetic mathematical model was established, and the corresponding thermodynamic and kinetic constant was calculated. The result of this study proved validity of the mechanism and mathematical model proposed in the article.  相似文献   

18.
柳红军  周通  沈玉华  谢安建 《应用化学》2015,32(12):1410-1415
研究了Ce(Ⅲ)离子与巴比妥钠形成的配合物对双(对硝基苯基)磷酸酯(BNPP)的催化水解作用。 结果表明, Ce(Ⅲ)与巴比妥钠形成的配合物对BNPP的水解具有很高的催化活性,可使BNPP水解速率提高至自发水解时的1.52×108倍。 体系的pH值和温度对催化水解反应的影响,发现在温度为25 ℃和pH值为8.50的条件下,催化效果最佳。  相似文献   

19.
采用壳聚糖与缩水甘油三甲基氯化铵反应制备了壳聚糖季铵盐(HTACC), 研究了其Zn(Ⅱ)配合物HTACC-Zn(Ⅱ)催化DNA的模拟底物对硝基苯酚磷酸双酯(BNPP)水解的动力学过程及其对质粒DNA的催化裂解. 结果表明, HTACC-Zn(Ⅱ)对BNPP的水解反应具有良好的催化活性, 其表观一级速率常数可达到6.7×10-6 s-1, 为BNPP自发水解时的6.0×104倍; 同时, HTACC-Zn(Ⅱ)还能够有效催化质粒DNA(pUC19)的裂解, 使DNA分子由超螺旋结构裂解为开环和线型结构.  相似文献   

20.
杨娥  周立新  章永凡 《结构化学》2002,21(1):103-109
在B3LYP、HF和MP2水平上运用全电子从头算(AE)和相对论有效实势(RECP)及6-311+G**和LanL2DZ基组计算Ⅰa、Ⅰb、Ⅱa和Ⅱb族金属离子与磷酸二甲酯阴离子(DMP-)的相互作用。 RECP用于除Li+、Be2+外所有的金属离子。 对Na+、K+、Cu+、Mg2+、Ca2+、Zn2+用AE和RECP 2种方法处理。 结果表明:RECP能可靠地用于重金属离子络合物; 二价金属离子络合物(DMP-—M2+)比一价金属离子络合物 (DMP-—M+)稳定;二价金属离子(M2+)可能比一价金属离子(M+)更易使多核苷酸折叠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号