首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Overlimiting current modes are of considerable interest for the practice of electrodialysis (ED). However, the economical expedience of such ED modes is evident only for desalination of dilute solutions. Here, we show the theoretical analysis of the effect of concentration on the behavior of an ED cell with homogeneous ion-exchange membranes. The study is based on numerical solution of the two-dimensional system of coupled equations of Nernst–Planck–Poisson–Navier–Stokes. It is shown that as the electrolyte concentration in solution that enters the ED desalination chamber increases, the intensity of electroconvection decreases, which induces a decrease in the relative mass-transfer rate (the decrease in the ratio of current density to its limiting value). This effect is stronger in the region of high potential differences where the electroconvective instability of Rubinstein–Zaltzman is realized under the conditions of a nonuniform concentration field caused by solution desalination. In contrast, the increase in the counterion concentration at the membrane surface (associated with the increase in the surface charge) intensifies the electroconvection.  相似文献   

2.
Ha SH  Mai NL  Koo YM 《Journal of chromatography. A》2010,1217(49):7638-7641
Microwave-assisted separation has been applied to recover ionic liquid (IL) from its aqueous solution as an efficient method with respect to time and energy compared to the conventional vacuum distillation. Hydrophilic ILs such as 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-ethyl-3-methylimidazolium methylsulfate ([Emim][MS]) could be recovered in 6 min from the mixture of ILs and water (1:1, w/w) under microwave irradiation at constant power of 10 W while it took at least 240 min to obtain ILs containing same water content (less than 0.5 wt%) by conventional vacuum oven at 363.15 K with 90 kPa of vacuum pressure. Energy consumptions per gram of evaporated water from the homogeneous mixture of hydrophilic ILs and water (1:1, w/w) by microwave-assisted separation were at least 52 times more efficient than those in conventional vacuum oven. It demonstrated that microwave-assisted separation could be used for complete recovery of ILs in sense of time and energy as well as relevant purity.  相似文献   

3.
In this work, mostly Nernst–Planck derived relationships were used to simulate the electrodialytic recovery of a strong electrolyte, namely sodium chloride. To this end, it was set up a five-step experimental procedure consisting of zero-current leaching, osmosis, and dialysis, electro-osmosis, desalination, current–voltage and validation tests. The contribution of leaching and solute diffusion across the electro-membranes was found to be negligible with respect to the electro-migration. On the contrary, solvent diffusion tended to be important as the solute concentration difference at the membrane sides increased or current density was reduced. The electro-osmosis and desalination tests yielded the water and solute transport numbers.

By performing several limiting current tests at different solute concentrations and feed flow rates using anionic or cationic membranes, it was possible to determine simultaneously the limiting current intensity, the ratio of the differences between the counter-ion transport numbers in the anion- and cation-exchange membranes and solution, the overall resistance of the electro-membranes, the effective membrane surface area, and the solute mass transfer coefficient.

All these process and design parameters allowed the time course of the solute concentration in the concentrating (C) and diluting (D) compartments, as well as the voltage applied to the electrodes, to be reconstructed quite accurately without any further correction factors. The capability of the above parameters to simulate the performance of the electrodialysis (ED) unit was checked by resorting to a few validation tests, that were performed in quite different operating conditions from those used in the training tests, that is by filling tank C with a low feed volume with a low solute concentration and applying a constant current intensity to magnify the effect of electro-osmosis or by changing the current intensity step-wisely to simulate the continuous-mode operation of a multistage ED unit. Finally, a parameter sensitivity analysis made the different contribution of the process and design parameters to be assessed, thus yielding a straightforward procedure for designing or optimising accurately ED desalination units up to a final salt concentration of about 1.7 kmol m−3.  相似文献   


4.
Among the many types of lignocellulosic biomass pretreatment methods, the use of ionic liquids (ILs) is regarded as one of the most promising strategies. In this study, the effects of four kinds of ILs for pretreatment of lignocellulosic biomass such as bagasse, eucalyptus, and cedar were evaluated. In direct ethanol fermentation from biomass incorporated with ILs by cellulase-displaying yeast, 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) was the most effective IL. The ethanol production and yield from [Bmim][OAc]-pretreated bagasse reached 0.81 g/L and 73.4% of the theoretical yield after fermentation for 96 h. The results prove the initial concept, in which the direct fermentation from lignocellulosic biomass effectively promoted by the pretreatment with IL.  相似文献   

5.
对管线式介质阻挡放电中的甲醛脱除进行了实验研究, 测量了介质阻挡放电产生的OH (A2Σ→X 2Π, 0-0)自由基发射光谱. 研究了在一个大气压下不同放电峰值电压、放电频率、添加氩气和氧气时甲醛脱除率与OH自由基发射光谱强度的变化关系. 实验结果表明: 在氮气含甲醛体系中, 提高放电峰值电压、放电频率和增大氩气含量时, 甲醛脱除率随OH (A2Σ→X 2Π, 0-0)自由基发射光谱强度的增强而提高; 当在氮气含甲醛体系中增大氧气含量时, 甲醛脱除率随OH (A2Σ→X 2Π, 0-0)自由基发射光谱强度的减弱而降低. 在11.5 kV放电峰值电压和9 kHz放电频率下, 氮气含甲醛体系中甲醛脱除率达93.8%.  相似文献   

6.
Ionic liquids (ILs) have attracted significant interest because of their desirable properties. These characteristics have improved their application to overcome the shortcomings of conventional separation techniques for phytochemicals. In this study, several ILs were investigated for their capacity to extract isoimperatorin, a bioactive furanocoumarin, from the roots of Ostericum koreanum. Herein, 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) was selected as a promising IL for separating isoimperatorin. A central composite design was applied to optimize the extraction conditions. Under the optimal conditions, the yield of isoimperatorin reached 97.17 ± 1.84%. Additionally, the recovery of isoimperatorin from the [Bmim][BF4] solution was successfully achieved (87.73 ± 2.37%) by crystallization using water as an antisolvent. The purity of the isoimperatorin was greatly enhanced, from 0.26 ± 0.28% in the raw material to 26.94 ± 1.26% in the product, in a one-step crystallization process. Namely, an enhancement of approximately 103-folds was reached. The developed approach overcomes the shortcomings of conventional separation methods applied for gaining isoimperatorin by significantly reducing the laboriousness of the process and the consumption of volatile organic solvents. Moreover, the simplicity and effectiveness of the method are assumed to be valuable for producing isoimperatorin-enriched products and for promoting its purification. This work also confirms the efficiency of ILs as a promising material for the separation of phytochemicals.  相似文献   

7.
Anode slime (AS) including high content of precious metals is a by-product obtained after the electro-refining stage in copper production. In this study, it is aimed to recover Cu, Au, and Ag from the AS by using 1-butyl-3-methyl-imidazolium hydrogen sulphate ([Bmim]HSO4) ionic liquid (IL) as a green solvent. The effects of IL concentration, temperature, reaction time and pulp density on recovery of valuable metals were statistically investigated. A high copper recovery of 87.52% was obtained under optimum condition as in 60% (v/v) [Bmim]HSO4 at 50 °C after 2 h, pulp density at 40 g/L (1/25 solid/liquid ratio). Also, a remarkable gold recovery as 97.32% has been achieved in 80% (v/v) [Bmim]HSO4 at 95 °C after 4 h, pulp density at 40 g/L. Temperature and IL concentration were detected as the most effective parameters for copper and gold recovery from AS, respectively. Silver could not be recovered from the AS due to the lower solubility in [Bmim]HSO4 IL media. According to experimental results, [Bmim]HSO4 could be offered as an alternative leaching agent, instead of conventional solvents, to recover valuable metals from copper anode slime.  相似文献   

8.
The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.  相似文献   

9.
Cost-effective operations of a batch electrodialyzer for removal of salt from a single salt solution are investigated. It is desired to minimize the operating cost for a particular batch. The operating cost for an electrodialysis (ED) stack is comprised of cost related to energy consumption and cost of maintenance of the ED stack. In effective operations of an ED stack, the maintenance cost is a small fraction of the total operating cost. The bulk of the operating cost is therefore proportional to total energy consumption, which is the sum of the electrical energy needed for salt removal and the energy required to pump various solutions through the ED stack. For fixed feed composition and the desired percent salt recovery, the total energy required is influenced by trajectories of current flowing through and the voltage applied across the ED stack and the operating time. In this regard, the following operations are studied: (I) constant current operation, (II) constant voltage operation, (III) constant current operation followed by constant voltage operation, (IV) constant voltage operation followed by constant current operation, and (V) operation with time-variant current and voltage. For arbitrary relations among salt concentration, current utilization, and stack resistance, optimal current and voltage trajectories that lead to minimum energy requirement are identified for each of the five operations. It is established analytically that operation V is superior to operations III and IV, which in turn are superior to operations I and II. Numerical illustrations reveal that the performance differences in these operations are enhanced as the percent salt recovery is increased.  相似文献   

10.
Desalination is priority in process water treatment and several different technologies can be applied to minimize the total salinity of water. Our aim was to study desalination and simultaneous elimination of heavy metal residues from process waters. Nanofiltration (NF) and electrodialysis (ED) treatment technologies were applied for high salinity model solutions and high salinity, heavy metal containing real process waters originating from electroplating industry. Efficiencies of two technologies were compared in respect to salt and heavy metal removal both for model solutions (NaCl and Na2SO4) and three real process water samples. Initial concentrations of model solutions chosen accordingly the most common process water salt composition. Both technologies showed similar efficiency of heavy metal (Ni2+ and Cu2+) removal; however, they provide different demineralization rates, rejection, and extraction percentage for sodium and chloride ions. ED experiments of model solutions showed complete desalination after 1 h operating time at 6 V applied voltage; on the other hand, the increasing conductivities of NF permeates verified the selectivity of NF membrane, therefore, representing partial desalination. These phenomena were confirmed by demineralisation rate values as well (NF: for NaCl: 41.5–66.6%, for Na2SO4: > 96.6%; ED: both for NaCl and Na2SO4 > 98%). Significantly. higher demineralisation rates were achieved by ED (37.3–99.2%) than NF (20.2–62.3%) during the treatment of real process waters. We successfully demonstrated that ED is more efficient for simultaneous salt and heavy metal removal for process waters originating of electroplating industry.  相似文献   

11.
An electrochromic liquid crystal (ECLC) material composed of only liquid crystal (LC) and ionic liquid (IL) was developed. The LC containing the substituted diphenylacetylene serves as electrochromic (EC) material to realise transmittance and colour change under the direct current (DC) field, while the IL with the designable cation and anion served as electrolyte. Herein, a series of IL electrolytes was screened to investigate how IL tunes the electro-optic performance of the ECLC cell. By testing the electrochemistry window of ILs in EC cells, IL with the [NTf2]? anion shows adequate electrochemical stability when the EC material undergoes oxidation and reduction. The electro-optic performance of ECLC containing 1-ethoxy-4-[2-(4-pentylphenyl) ethynyl]-benzene (PEB) and IL was then evaluated by UV-vis spectrometry under the control of an electrochemical work station. Compared with other PEB-IL, PEB-[Bmim][NTf2] with [Bmim][NTf2] electrolyte shows a satisfactory transmittance at low operating voltage. Furthermore, Pd NPs in situ formed in [Bmim][NTf2] reduced the EC potential and improved the light scattering of the ECLC cell. In this work, we also designed a bifunctional device based on polymer dispersed liquid crystal (PDLC) that hosts electrochromic guest molecules, and analysed the electro-optical and electrochromic properties of LC electrolyte mixtures, in order to gain control of the incident daylight and glare in building and automotive applications.  相似文献   

12.
We describe the lower critical solution temperature(LCST)-type phase behavior of poly(butyl acrylate)(PBA) dissolved in hydrophobic 1-alkyl-3-methylimidazolium bis{(trifluoromethyl) sulfonyl}amide ionic liquids(ILs). The temperature-composition phase diagrams of these PBA/ILs systems are strongly asymmetric with the critical composition shifted to low concentrations of PBA. As the molecular weight increases from 5.0×10~3 to 2.0×10~4, the critical temperature decreases by about 67 °C, and the critical composition shifts to a lower concentration.Furthermore, the LCST of PBA/ILs system increases as increasing the alkyl side chain length in the imidazolium cation. Using IL blends as solvents,the LCST of PBA can be tuned almost linearly over a wide range by varying the mixing ratio of two ionic liquids without modifying the chemical structure of the polymers.  相似文献   

13.
The separation of six kinds of aromatic acids by CZE with 1‐ethyl‐3‐methylimidazolium chloride (EMIMCl) and 1‐ethyl‐3‐methylimidazolium hydrogen sulfate (EMIMHSO4), two kinds of ionic liquids (ILs) as background electrolytes, and acetonitrile as solvent were investigated. The six kinds of aromatic acids can be separated under positive voltage with low IL concentration with either of the two ILs and separation with EMIMHSO4 is better in consideration of peak shapes and separation efficiency. But the migration order is different when the IL is different. Under negative voltage with high IL concentration, the six analytes can be separated with EMIMCl as background electrolytes and the migration order of the analytes is opposite to those with low concentration of EMIMCl as background electrolyte. The separations are based on the combination effects of heteroconjugation between the anions and cations in the ILs and the analytes, of which the heteroconjugation between the anions in the ILs and the analytes plays a dominant role. The heteroconjugation between the anions of the ILs and analytes is proton sensitive and only a very small amount of proticsolvents added into the electrolyte solution can harm the separation. When EMIMCl concentration is high, the heteroconjugation between the IL anions and the proton in the analytes make the effective mobility of the analytes much higher than the EOF and their migration direction reversed. Finally, the six aromatic acids in water samples were analyzed by nonaqueous CE with low concentration of EMIMHSO4 as background electrolytes with satisfactory results.  相似文献   

14.
Ionic liquids (ILs) have sparked much interest as alternative solvents for plant materials as they provide distinctive properties. Therefore, in this study, the capacity of ILs to extract oxypeucedanin hydrate and byakangelicin from the roots of Angelica dahurica (A. dahurica) was investigated. The back-extraction method was examined to recover target components from the IL solution as well. Herein, [Bmim]Tf2N demonstrated outstanding performance for extracting oxypeucedanin hydrate and byakangelicin. Moreover, factors including solvent/solid ratio, extraction temperature and time were investigated and optimized using a statistical approach. Under optimum extraction conditions (solvent/solid ratio 8:1, temperature 60 °C and time 180 min), the yields of oxypeucedanin hydrate and byakangelicin were 98.06% and 99.52%, respectively. In addition, 0.01 N HCl showed the most significant ability to back-extract target components from the [Bmim]Tf2N solution. The total content of both oxypeucedanin hydrate (36.99%) and byakangelicin (45.12%) in the final product exceeded 80%. Based on the data, the proposed approach demonstrated satisfactory extraction ability, recovery and enrichment of target compounds in record time. Therefore, the developed approach is assumed essential to considerably reduce drawbacks encountered during the separation of oxypeucedanin hydrate and byakangelicin from the roots of A. dahurica.  相似文献   

15.

Titanium dioxide (TiO2 titania) hollow sphere was simply synthesized using various ionic liquids (ILs). The shape and size of TiO2 particles were significantly different with the composition of ILs. This is mainly attributed to the interaction between organic solvent and IL at the interface leading to the formation of sphere. Among the binary ILs, [Bmim][BF4] + [Omim][PF6], [Bmim][BF4] + [Omim][PF6], and [Bmim][PF6] + [Hmim][PF6] were useful to prepare TiO2 nanostructures with high surface area and anatase phase. Especially, [Bmim][BF4] + [Omim][PF6] was the most effective IL to synthesize an anatase TiO2 hollow sphere.

  相似文献   

16.
Electrodialysis (ED) shows good potential for downstream processing of acetate fermentation broths, to separate acetic acid while unreacted glucose and other nutrients are partially recycled back to the fermenter. With conventional anion- and cation-exchange membranes, higher current increased acetate flux, water flux, and energy consumption. Multiple ED stacks connected in series with unequal initial volumes for a batch process maximized acetate concentration in the concentrating stream to 134g/L calcium-magnesium acetate (CMA) in the fermentation broth at pH 6.8. Back-transport of acetate from the product into the feed stream and water transport limit the maximum concentration possible. Cost of ED is about $295/ton acetate for the CMA broth.  相似文献   

17.
选取四种不同种类离子液体(ILs),1-丁基-3-甲基咪唑溴化物([Bmim]Br)、1-丁基-3-甲基咪唑四氟硼酸盐([Bmim]BF_4)、1-丁基-3-甲基咪唑硫酸氢盐([Bmim]HSO_4)、1-丁基-3-甲基咪唑磷酸二氢盐([Bmim]H_2PO_4)与30%H_2O_2溶液在温和条件下对两种高硫脱灰煤样(LS、QX)进行脱硫实验研究。用化学法测定脱硫前后煤样形态硫含量,并利用傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)及热重(TG)对脱硫前后的煤样进行表征。结果表明,离子液体的加入使H_2O_2氧化脱硫能力增强,煤中硫铁矿硫和有机硫化物硫被显著脱除;经ILs/H_2O_2体系作用后的煤样中小粒径的颗粒减少,颗粒间的缝隙增大,煤表面的凹坑明显,热重实验结果表明,ILs/H_2O_2体系作用后的煤样相对于原煤热失重增大,部分挥发性物质释放峰温提前。  相似文献   

18.
The energy transfer efficiency from pulse generation circuit to corona discharge reactor was investigated. To find the optimum energy transfer condition, we varied the value of the pulse-forming capacitor in pulse generation circuit. Maximum energy transfer from pulse generation circuit to corona discharge reactor was achieved when the ratio of the pulse-forming capacitance to the geometric capacitance of the reactor was around 3.0. From the analyses of the voltage and current waveforms, we found that the capacitance of the reactor increases about three times, due to the corona development. This increase is the reason why the maximum energy transfer occurs when the pulse-forming capacitance is three times larger than the initial capacitance of the reactor. The energy consumption for removal of nitric oxide was also minimized at this capacitance ratio.  相似文献   

19.
The advancement of the information age has intensified the focus on photosensitive materials for information storage devices. To develop new photosensitive two azobenzene side-chain polymers i.e., poly(E)-3-(4-((4-nitrophenyl)diazenyl)phenoxy)propyl acrylate (polymer-1) and poly(E)-3-(4-((2-methoxy-4-nitrophenyl)diazenyl)phenoxy)propyl acrylate (polymer-2), were developed, and their diffraction efficiency was evaluated. The impact of ionic liquids (ILs) on the diffraction efficiency was evaluated by combining the polymers with imidazolium and ammonium families of ILs such as 1-butyl-3-methylimidazolium bromide [Bmim]Br, 1-ethyl-3-methyl-imidazolium-bromide [Emim]Br (imidazolium ILs), and triethylammonium methanesulfonate [TMEAS] (ammonium IL). The molecular interaction of both azobenzene side-chain polymers with the ILs was evaluated before the diffraction efficiency studies by employing UV–vis, FT-IR, and confocal Raman spectroscopies. The spectroscopic studies revealed the interaction of the polymers with the imidazolium and ammonium ILs. The mean diffraction efficiency of polymers-1 and ?2 were ~0.05 and ~0.022%, respectively. After the addition of the ILs, the diffraction efficiency increased. The highest diffraction efficiency was achieved with the polymer-2 + [Emim]Br system of 3.5% and polymer-2 + TEMS combination of 4.03%. Therefore, although the diffraction efficiency of polymer-1 was higher than that of polymer-2, after adding the ILs, the diffraction efficiency of polymer-2 surpassed that of the polymer-1 + ILs system.  相似文献   

20.
Electrodialysis (ED) using two-stack configurations with homopolar or bipolar membranes was investigated for deacidification of tropical fruit juices (passion fruit, mulberry, naranjilla). The objective was to develop a mathematical treatment for ED to predict the behavior of a fruit juice at industrial scale from ED performances at laboratory scale. From parameters such as current efficiency, electric resistance of the anion exchange membrane, and coefficients of variation with temperature determined in a laboratory-scale stack, modeling was applied to a pilot-scale stack that has a total effective membrane area 70 times larger. If no fouling took place, and except for conductivity at pH higher than 3.8, the differences between the experimental and simulated values for pH, titrable acidity, voltage, and energy consumption were inferior to 7%, 16%, 20%, and 15%, respectively, for all the fruit juices and operating conditions. Moreover, the average electrical charge of citric acid species transferred was 2.16 for all fruit juices, indicating that the current transport was mainly due to the ionic species issued from the secondary dissociation of the citric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号