首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, we consider global subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and has boundary conditions on the nozzle walls. Existence and uniqueness of global subsonic solution are established for an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The results give a strictly mathematical proof to the assertion in Bers (1958) [2]: there exists a critical value of the incoming mass flux such that a global subsonic flow exists uniquely in a nozzle, provided that the incoming mass flux is less than the critical value. The existence of subsonic flow is obtained by the precisely a priori estimates for the elliptic equation of two variables. With the assumptions on the nozzle in the far fields, the asymptotic behavior can be derived by a blow-up argument for the infinitely long nozzle. Finally, we obtain the uniqueness of uniformly subsonic flow by energy estimate and derive the existence of the critical value of incoming mass flux.  相似文献   

2.
We establish the existence and uniqueness of transonic flows with a transonic shock through a two-dimensional nozzle of slowly varying cross-sections. The transonic flow is governed by the steady, full Euler equations. Given an incoming smooth flow that is close to a constant supersonic state (i.e., smooth Cauchy data) at the entrance and the subsonic condition with nearly horizontal velocity at the exit of the nozzle, we prove that there exists a transonic flow whose downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. This problem is approached by a one-phase free boundary problem in which the transonic shock is formulated as a free boundary. The full Euler equations are decomposed into an elliptic equation and a system of transport equations for the free boundary problem. An iteration scheme is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for the elliptic equation and the system of transport equations with the Schauder fixed point argument. The uniqueness of transonic nozzle flows is also established by employing the coordinate transformation of Euler-Lagrange type and detailed estimates of the solutions.  相似文献   

3.
In this paper, we consider the uniqueness of globally subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and satisfies no-flow boundary conditions on the nozzle walls. We will show that for given mass flux and Bernoulli’s function in the upstream, the subsonic flow is unique in the class of all axisymmetric solutions, which possess the asymptotic behaviors at the far fields. This result extends the uniqueness of solutions in the previous paper Du and Duan (2011) [1].  相似文献   

4.
The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic–sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div–curl system, and delicate estimate for the transport equations.  相似文献   

5.
In this paper, we study the existence and uniqueness of three dimensional non-isentropic subsonic Euler flows in rectangular nozzles. This work is an extension of Chen and Xie’s work on isentropic subsonic Euler flows. If, besides small normal component of vorticity, Bernoulli’s function and entropy function with small variations are given on the entrance, the existence and uniqueness of non-isentropic subsonic Euler flows are established.  相似文献   

6.
We construct special solutions of the full Euler system for steady compressible flows in a convergent-divergent approximate nozzle and study the stability of the purely subsonic flows. For a given pressure p0 prescribed at the entry of the nozzle, as the pressure p1 at the exit decreases, the flow patterns in the nozzle change continuously: there appear subsonic flow, subsonic-sonic flow, transonic flow and transonic shocks. Our results indicate that, to determine a subsonic flow in a two-dimensional nozzle, if the Bernoulli constant is uniform in the flow field, then this constant should not be prescribed if the pressure, density at the entry and the pressure at the exit of the nozzle are given; if the Bernoulli constant and both the pressures at the entrance and the exit are given, the average of the density at the entrance is then totally determined.  相似文献   

7.
This paper is concerned with the problem on the global existence and stability of a subsonic flow in an infinitely long cylindrical nozzle for the 3D steady potential flow equation. Such a problem was indicated by Courant-Friedrichs in [8, p. 377]: A flow through a duct should be considered as a cal symmetry and should be determined steady, isentropic, irrotational flow with cylindriby solving the 3D potential flow equations with appropriate boundary conditions. By introducing some suitably weighted HSlder spaces and establishing a priori estimates, the authors prove the global existence and stability of a subsonic potential flow in a 3D nozzle when the state of subsonic flow at negative infinity is given.  相似文献   

8.
This is a continuation of our previous paper Du et al. (http://www.ims.cuhk.edu.hk/publications/reports/2012-06.pdf), where we have characterized a set of physical boundary conditions that ensures the existence and uniqueness of subsonic irrotational flow in a flat nozzle. In this paper, we will investigate the influence of the incoming flow angle and the geometry structure of the nozzle walls on subsonic flows in a finitely long curved nozzle. It turns out to be interesting that the incoming flow angle and the angle of inclination of nozzle walls play the same role as the end pressure for the stabilization of subsonic flows. In other words, the L 2 and L bounds of the derivative of these two quantities cannot be too large, similar as we have indicated in Du et al. (http://www.ims.cuhk.edu.hk/publications/reports/2012-06.pdf) for the end pressure. The curvatures of the nozzle walls will also play an important role in the stability of the subsonic flow.  相似文献   

9.
In this paper, we establish the existence and stability of a 3-D transonic shock solution to the full steady compressible Euler system in a class of de Laval nozzles with a conic divergent part when a given variable axi-symmetric exit pressure lies in a suitable scope. Thus, for this class of nozzles, we have solved such a transonic shock problem in the axi-symmetric case described by Courant and Friedrichs (1948) in Section 147 of [8]: Given the appropriately large exit pressure pe(x), if the upstream flow is still supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes and the gas is compressed and slowed down to subsonic speed so that the position and the strength of the shock front are automatically adjusted such that the end pressure at the exit becomes pe(x).  相似文献   

10.
In this paper we establish the existence and uniqueness of a transonic shock for the steady flow through a general two‐dimensional nozzle with variable sections. The flow is governed by the inviscid potential equation, and is supersonic upstream, has no‐flow boundary conditions on the nozzle walls, and a given pressure at the exit of the exhaust section. The transonic shock is a free boundary dividing two regions of C flow in the nozzle. The potential equation is hyperbolic upstream where the flow is supersonic, and elliptic in the downstream subsonic region. In particular, our results show that there exists a solution to the corresponding free boundary problem such that the equation is always subsonic in the downstream region of the nozzle when the pressure in the exit of the exhaustion section is appropriately larger than that in the entry. This confirms exactly the conjecture of Courant and Friedrichs on the transonic phenomena in a nozzle [10]. Furthermore, the stability of the transonic shock is also proved when the upstream supersonic flow is a small steady perturbation for the uniform supersonic flow or the pressure at the exit has a small perturbation. The main ingredients of our analysis are a generalized hodograph transformation and multiplier methods for elliptic equation with mixed boundary conditions and corner singularities. © 2004 Wiley Periodicals, Inc.  相似文献   

11.
In this paper, we study the global existence of steady subsonic Euler flows through infinitely long nozzles which are periodic in x1-direction with the period L. It is shown that when the variation of Bernoulli function at some given section is small and mass flux is in a suitable regime, there exists a unique global subsonic flow in the nozzle. Furthermore, the flow is also periodic in x1-direction with the period L. If, in particular, the Bernoulli function is a constant, we also get the existence of subsonic-sonic flows when the mass flux takes the critical value.  相似文献   

12.
ABSTRACT

We study the initial boundary value problem of bipolar semiconductor hydrodynamic model with recombination-generation rate for the non-constant doping profile. The new feature is that the current distribution for electrons and holes is not constant. In order to overcome this difficulty, the existence and uniqueness of a subsonic stationary solution are first established by elliptic theorem. Then, for such an Euler–Poisson system, we prove, by means of a technical energy method, that the subsonic solutions are unique, exist globally and asymptotically converge to the corresponding stationary solutions. An exponential decay rate is also derived.  相似文献   

13.
This paper investigates the steady subsonic inviscid flows with large vorticities through two‐dimensional infinitely long nozzles. We establish the existence and uniqueness of the smooth subsonic ideal flows, which are governed by a two‐dimensional complete Euler system. More precisely, given the horizontal velocity with possible large oscillation and the entropy of the incoming flows at the entrance of the nozzles, it was shown that there exists a critical value; if the mass flux of the incoming flows is larger than the critical one, then there exists a unique smooth subsonic polytropic gas through the given smooth infinitely long nozzles. Furthermore, the maximal speed of the flows approaches to the sonic speed, as the mass flux goes to the critical value. The results improve the previous work for steady subsonic flows with small vorticities and for subsonic irrotational flows and indicate that the large vorticity is admissible for the smooth subsonic ideal flows in nozzles. This paper gives a rigorous proof to the well posedness of the smooth subsonic problem first posed back in the basic survey of Lipman Bers for inviscid flows with large vorticities. John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, under certain downstream pressure condition at infinity, we study the globally stable transonic shock problem for the perturbed steady supersonic Euler flow past an infinitely long 2-D wedge with a sharp angle. As described in the book of Courant and Friedrichs [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948] (pages 317-318): when a supersonic flow hits a sharp wedge, it follows from the Rankine-Hugoniot conditions and the entropy condition that there will appear a weak shock or a strong shock attached at the edge of the sharp wedge in terms of the different pressure states in the downstream region, which correspond to the supersonic shock and the transonic shock respectively. It has frequently been stated that the strong shock is unstable and that, therefore, only the weak shock could occur. However, a convincing proof of this instability has apparently never been given. The aim of this paper is to understand this open problem. More concretely, we will establish the global existence and stability of a transonic shock solution for 2-D full Euler system when the downstream pressure at infinity is suitably given. Meanwhile, the asymptotic state of the downstream subsonic solution is determined.  相似文献   

15.
This paper concerns subsonic flows passing a two-dimensional duct for the steady compressible Euler system. If the Bernoulli constant is uniform in the flow field, the density at the entry and both the pressures at the entrance and the exit are given, we show that the problem is generally ill-posed; but if we give the pressure at the exit with a constant difference, then under the same other conditions as above we establish the existence of subsonic flows.  相似文献   

16.
We investigate the problem to define statistical solutions for the two-dimensional, periodic Euler Equation and prove a theorem of global existence and uniqueness for a regularized version. Moreover, we deduce the existence of the Euler flow in a weak form.  相似文献   

17.
In this paper we construct a class of transonic shock in a divergent nozzle which is a part of an angular sector (for two-dimensional case) or a cone (for three-dimensional case) which does not contain the vertex. The state of the compressible flow depends only on the distance from the vertex of the angular sector or the cone. It is supersonic at the entrance, while for appropriately given large pressure at the exit, a transonic shock front appears in the nozzle and the flow becomes subsonic after passing it. The position and strength of the shock is automatically adjusted according to the pressure given at the exit. We demonstrate these phenomena by using the two-dimensional and three-dimensional full steady compressible Euler systems. The idea involved is to solve discontinuous solutions of a class of two-point boundary value problems for systems of ordinary differential equations. Results established in this paper may be used to analyze transonic shocks in general nozzles.  相似文献   

18.
We address the structural stability of 3-D axisymmetric subsonic flows with nonzero swirl for the steady compressible Euler–Poisson system in a cylinder supplemented with non-small boundary data. A special Helmholtz decomposition of the velocity field is introduced for 3-D axisymmetric flow with a nonzero swirl (=?angular momentum density) component. With the newly introduced decomposition, a quasilinear elliptic system of second order is derived from the elliptic modes in Euler–Poisson system for subsonic flows. Due to the nonzero swirl, the main difficulties lie in the solvability of a singular elliptic equation which concerns the angular component of the vorticity in its cylindrical representation, and in analysis of streamlines near the axis r=0.  相似文献   

19.
In this paper, we establish existence of global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles by combining variational method, various elliptic estimates and a compensated compactness method. More precisely, it is shown that there exist global subsonic flows in nozzles for incoming mass flux less than a critical value; moreover, uniformly subsonic flows always approach to uniform flows at far fields when nozzle boundaries tend to be flat at far fields, and flow angles for axially symmetric flows are uniformly bounded away from π/2; finally, when the incoming mass flux tends to the critical value, subsonic-sonic flows exist globally in nozzles in the weak sense by using angle estimate in conjunction with a compensated compactness framework.  相似文献   

20.
In this paper, under the generalized conservation condition of mass flux in a unbounded domain, we are concerned with the global existence and stability of a perturbed subsonic circulatory flow for the two-dimensional steady Euler equation, which is assumed to be isentropic and irrotational. Such a problem can be reduced into a second order quasi-linear elliptic equation on the stream function in an exterior domain with a Dirichlet boundary value condition on the circular body and a stability condition at i...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号