首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

2.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

3.
In this paper, we first construct the second kind Chebyshev wavelet. Then we present a computational method based on the second kind Chebyshev wavelet for solving a class of nonlinear Fredholm integro-differential equations of fractional order. The second kind Chebyshev wavelet operational matrix of fractional integration is derived and used to transform the equation to a system of algebraic equations. The method is illustrated by applications and the results obtained are compared with the existing ones in open literature. Moreover, comparing the methodology with the known technique shows that the present approach is more efficient and more accurate.  相似文献   

4.
In this paper, the alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear multi-order fractional differential equations (FDEs). First, the operational matrix of fractional integration of an arbitrary order and the product operational matrix are derived for ALPs. These matrices together with the spectral Tau method are then utilized to reduce the solution of the mentioned equations into the one of solving a system of nonlinear algebraic equations with unknown ALP coefficients of the exact solution. The fractional derivatives are considered in the Caputo sense and the fractional integration is described in the Riemann-Liouville sense. Numerical examples illustrate that the present method is very effective for linear and nonlinear multi-order FDEs and high accuracy solutions can be obtained only using a small number of ALPs.  相似文献   

5.
In this paper, a new two‐dimensional fractional polynomials based on the orthonormal Bernstein polynomials has been introduced to provide an approximate solution of nonlinear fractional partial Volterra integro‐differential equations. For this aim, the fractional‐order orthogonal Bernstein polynomials (FOBPs) are constructed, and its operational matrices of integration, fractional‐order integration, and derivative in the Caputo sense and product operational matrix are derived. These operational matrices are utilized to reduce the under study problem to a nonlinear system of algebraic equations. Using the approximation of FOBPs, the convergence analysis and error estimate associated to the proposed problem have been investigated. Finally, several examples are included to clarify the validity, efficiency, and applicability of the proposed technique via FOBPs approximation.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(5-6):1775-1787
In this paper, we propose a new approach of the generalized differential transform method (GDTM) for solving nonlinear fractional differential equations. In GDTM, it is a key to derive a recurrence relation of generalized differential transform (GDT) associated with the solution in the given fractional equation. However, the recurrence relations of complex nonlinear functions such as exponential, logarithmic and trigonometry functions have not been derived before in GDTM. We propose new algorithms to construct the recurrence relations of complex nonlinear functions and apply the GDTM with the proposed algorithms to solve nonlinear fractional differential equations. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed technique is robust and accurate for solving fractional differential equations.  相似文献   

7.
In this paper, a new numerical method for solving fractional differential equations is presented. The fractional derivative is described in the Caputo sense. The method is based upon Bernoulli wavelet approximations. The Bernoulli wavelet is first presented. An operational matrix of fractional order integration is derived and is utilized to reduce the initial and boundary value problems to system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

8.
In this paper we present a computational method for solving a class of nonlinear Fredholm integro-differential equations of fractional order which is based on CAS (Cosine And Sine) wavelets. The CAS wavelet operational matrix of fractional integration is derived and used to transform the equation to a system of algebraic equations. Some examples are included to demonstrate the validity and applicability of the technique.  相似文献   

9.
In this paper, we derived the shifted Jacobi operational matrix (JOM) of fractional derivatives which is applied together with spectral tau method for numerical solution of general linear multi-term fractional differential equations (FDEs). A new approach implementing shifted Jacobi operational matrix in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of nonlinear multi-term FDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The proposed methods are applied for solving linear and nonlinear multi-term FDEs subject to initial or boundary conditions, and the exact solutions are obtained for some tested problems. Special attention is given to the comparison of the numerical results obtained by the new algorithm with those found by other known methods.  相似文献   

10.
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. Here we construct the operational matrix of fractional derivative of order α in the Caputo sense using the linear B-spline functions. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus we can solve directly the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the new technique presented in the current paper.  相似文献   

11.
This work is concerned with the extension of the Jacobi spectral Galerkin method to a class of nonlinear fractional pantograph differential equations. First, the fractional differential equation is converted to a nonlinear Volterra integral equation with weakly singular kernel. Second, we analyze the existence and uniqueness of solutions for the obtained integral equation. Then, the Galerkin method is used for solving the equivalent integral equation. The error estimates for the proposed method are also investigated. Finally, illustrative examples are presented to confirm our theoretical analysis.  相似文献   

12.
In this study, fractional differential equations having quintic nonlinearity are considered by proposing an accurate numerical method based on the matching polynomial and matrix‐collocation system. This method provides an integration between matrix and fractional derivative, which makes it fast and efficient. A hybrid computer program is designed by making use of the fast algorithmic structure of the method. An error analysis technique consisting of the fractional‐based residual function is constructed to scrutinize the precision of the method. Some error tests are also performed. Figures and tables present the consistency of the approximate solutions of highly stiff model problems. All results point out that the method is effective, simple, and eligible.  相似文献   

13.
Variational iteration method has been successfully implemented to handle linear and nonlinear differential equations. The main property of the method is its flexibility and ability to solve nonlinear equations accurately and conveniently. In this paper, first, a general framework of the variational iteration method is presented for analytic treatment of differential equations of fractional order where the fractional derivatives are described in Caputo sense. Second, the new framework is used to compute approximate eigenvalues and the corresponding eigenfunctions for boundary value problems with fractional derivatives. Numerical examples are tested to show the pertinent features of this method. This approach provides a new way to investigate eigenvalue problems with fractional order derivatives.  相似文献   

14.
A matrix method for the solution of direct fractional Sturm-Liouville problems (SLPs) on bounded domains is proposed where the fractional derivative is defined in the Riesz sense. The scheme is based on the application of the Galerkin spectral method of orthogonal polynomials. The order of convergence of the eigenvalue approximations with respect to the matrix size is studied. Some numerical examples that confirm the theory and prove the competitiveness of the approach are finally presented.  相似文献   

15.
In this paper, the modified fractional reduced differential transform method (MFRDTM) has been proposed and it is implemented for solving fractional KdV (Korteweg-de Vries) equations. The fractional derivatives are described in the Caputo sense. In this paper, the reduced differential transform method is modified to be easily employed to solve wide kinds of nonlinear fractional differential equations. In this new approach, the nonlinear term is replaced by its Adomian polynomials. Thus the nonlinear initial-value problem can be easily solved with less computational effort. In order to show the power and effectiveness of the present modified method and to illustrate the pertinent features of the solutions, several fractional KdV equations with different types of nonlinearities are considered. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of fractional KdV equations.  相似文献   

16.
This work suggested a new generalized fractional derivative which is producing different kinds of singular and nonsingular fractional derivatives based on different types of kernels. Two new fractional derivatives, namely Yang-Gao-Tenreiro Machado-Baleanu and Yang-Abdel-Aty-Cattani based on the nonsingular kernels of normalized sinc function and Rabotnov fractional-exponential function are discussed. Further, we presented some interesting and new properties of both proposed fractional derivatives with some integral transform. The coupling of homotopy perturbation and Laplace transform method is implemented to find the analytical solution of the new Yang-Abdel-Aty-Cattani fractional diffusion equation which converges to the exact solution in term of Prabhaker function. The obtained results in this work are more accurate and proposed that the new Yang-Abdel-Aty-Cattani fractional derivative is an efficient tool for finding the solutions of other nonlinear problems arising in science and engineering.  相似文献   

17.
In this paper, a numerical method is presented to obtain and analyze the behavior of numerical solutions of distributed order fractional differential equations of the general form in the time domain with the Caputo fractional derivative. The suggested method is based on the Müntz–Legendre wavelet approximation. We derive a new operational vector for the Riemann–Liouville fractional integral of the Müntz–Legendre wavelets by using the Laplace transform method. Applying this operational vector and collocation method in our approach, the problem can be reduced to a system of linear and nonlinear algebraic equations. The arising system can be solved by the Newton method. Discussion on the error bound and convergence analysis for the proposed method is presented. Finally, seven test problems are considered to compare our results with other well‐known methods used for solving these problems. The results in the tabulated tables highlighted that the proposed method is an efficient mathematical tool for analyzing distributed order fractional differential equations of the general form.  相似文献   

18.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

19.
By the rapid growth of available data, providing data-driven solutions for nonlinear (fractional) dynamical systems becomes more important than before. In this paper, a new fractional neural network model that uses fractional order of Jacobi functions as its activation functions for one of the hidden layers is proposed to approximate the solution of fractional differential equations and fractional partial differential equations arising from mathematical modeling of cognitive-decision-making processes and several other scientific subjects. This neural network uses roots of Jacobi polynomials as the training dataset, and the Levenberg-Marquardt algorithm is chosen as the optimizer. The linear and nonlinear fractional dynamics are considered as test examples showing the effectiveness and applicability of the proposed neural network. The numerical results are compared with the obtained results of some other networks and numerical approaches such as meshless methods. Numerical experiments are presented confirming that the proposed model is accurate, fast, and feasible.  相似文献   

20.
A new shifted Chebyshev operational matrix (SCOM) of fractional integration of arbitrary order is introduced and applied together with spectral tau method for solving linear fractional differential equations (FDEs). The fractional integration is described in the Riemann–Liouville sense. The numerical approach is based on the shifted Chebyshev tau method. The main characteristic behind the approach using this technique is that only a small number of shifted Chebyshev polynomials is needed to obtain a satisfactory result. Illustrative examples reveal that the present method is very effective and convenient for linear multi-term FDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号