首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
An amphiphilic block copolymer of silacyclobutane and methacrylic acid (MAA) was synthesized via a living anionic polymerization of 1,1‐diethylsilacylcobutane (EtSB). Sequential addition of 1,1‐diphenylethylene and t‐butyl methacrylate (tBMA) to living poly(EtSB) in the presence of lithium chloride gave poly(EtSB‐blocktBMA) with narrow molecular weight distributions. The t‐butyl ester groups in the obtained polymer were readily hydrolyzed via heating in 1,4‐dioxane in the presence of concentrated aqueous hydrochloric acid. The block copolymer with a short MAA segment was soluble in chloroform and insoluble in methanol and basic water, whereas the block copolymer with a long MAA segment was soluble in methanol and basic water and insoluble in chloroform. The block polymer (EtSB/tBMA = 45/60) formed a monolayer film on the water surface; this was confirmed by surface pressure measurement. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 86–92, 2001  相似文献   

2.
Novel water‐soluble amphiphilic copolymers have been synthesized by free radical copolymerization of 2‐hydroxyethylacrylate with vinyl butyl ether. In water these copolymers exhibit lower critical solution temperature, which depends on the content of hydrophobic vinyl butyl ether units. The interaction between these copolymers and poly(acrylic acid) or poly(methacrylic acid) in aqueous solutions results in formation of interpolymer complexes stabilized by hydrogen bonds and hydrophobic interactions. An increase in hydrophobicity of the copolymers leads to the enhancement of their complex formation ability with respect to poly(acrylic acid) and poly(methacrylic acid). Poly(methacrylic acid) forms stronger complexes with the copolymers when compared with poly(acrylic acid). The complexes exhibit dual sensitivity to pH‐ and temperature and this property may be easily adjusted regulating the strength of interaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 195–204, 2006  相似文献   

3.
Carbon—carbon bond‐forming polymerization of 2‐bromo‐3‐(3′,5′‐di‐t‐butyl‐4′‐methoxyphenyl)‐thiophene yields poly[3‐(3′,5′‐di‐t‐butyl‐4′‐methoxyphenyl)‐2,5‐thienylene] with regiospecific connectivity and a degree of polymerization of about six. Lewis‐acid‐moderated‐cleavage of the methoxy groups on the pendant phenyl group yield the corresponding polyphenolic polymer, which is oxidized under solution conditions to yield the title polyradical. Poly[3‐(3′,5′‐di‐t‐butyl‐4′‐oxyphenyl)‐2,5‐thienylene] exhibits a strong, persistent electron spin resonance spectrum and a UV–visible spectrum consistent with formation of the pendant phenoxyl spin‐bearing units. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 779–788, 1999  相似文献   

4.
Terpolymers composed of Nn‐propylacrylamide (NPAAm), butyl methacrylate (BMA), and N,N‐diethylaminoethyl methacrylate (DEAEMA) were prepared in an attempt to investigate the temperature‐induced phase transition and its mechanism. Poly(NPAAm) showed the lower critical solution temperature (LCST) around 24°C in water. With the incorporation of DEAEMA with NPAAm, the LCST change was characterized by an initial increase. However, the LCST was shifted to the lower temperature at the later stage. This might be explained in terms of hydrophilic/hydrophobic contribution of DEAEMA to the LCST. The swelling behavior of copolymer gel in the various solvents and spin‐lattice relaxation time (T1) study by NMR strongly suggested the hydrophilic/hydrophobic contribution of DEAEMA to the LCST depending on the local environment. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1407–1411, 1999  相似文献   

5.
Core‐shell type star polymers composed of poly(tert‐butyl acrylate) (poly(t‐BuA)) arms and 100% hyperbranched poly(arylene‐oxindole) interiors were synthesized via the “core‐first” method. Atom transfer radical polymerization of t‐BuA initiated by 2‐bromopropionyl terminal groups of the hyperbranched core was applied for the synthesis of the stars. The resultant star structures were characterized by gel permeation chromatography with triple detection. Polymers of molar masses Mn up to 1.68 × 105 g/mol were obtained. The obtained star polymers compared with the linear counterparts of the same molar mass have a much more compact structure in solution. The intrinsic viscosities of the stars are also significantly lower than their linear counterparts. Light scattering experiments were performed to provide information about the size of these macromolecules in solution. Preliminary characterization of the thermal properties of these novel materials is also reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1120–1135, 2009  相似文献   

6.
The radical polymerization of Ntert‐butyl‐N‐allylacrylamide (t‐BAA) was carried out in a dimethyl sulfoxide/H2O mixture in the presence of β‐cyclodextrin (β‐CD). The polymerization proceeded with the complete cyclization of the t‐BAA unit and yielded optically active poly(t‐BAA). The IR spectrum of the obtained polymer showed that the cyclic structure in the polymer was a five‐membered ring. The optical activity of poly(t‐BAA) increased with an increasing molar ratio of β‐CD to the t‐BAA monomer. The interaction of β‐CD with t‐BAA was confirmed by 1H NMR and 13C NMR analyses of the polymerization system. It is suggested that interaction of the t‐BAA monomer with the hydrophobic cavity of β‐CD plays an important role in the asymmetric cyclopolymerization of t‐BAA. The radical copolymerization of t‐BAA with styrene (St), methyl methacrylate, ethyl methacrylate, or benzyl methacrylate (BMA) also produced optically active copolymers with a cyclic structure from the t‐BAA unit. St and BMA carrying a phenyl group were predicted to compete with t‐BAA for interaction with β‐CD in the copolymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2098–2105, 2000  相似文献   

7.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

8.
A series of poly(butylene terephthalate) copolyesters containing 5‐tert‐butyl isophthalate units up to 50 mol %, as well as the homopolyester entirely made of these units, were prepared by polycondensation from a melt. The microstructure of the copolymers was determined by NMR to be random for the whole range of compositions. The effect exerted by the 5‐tert‐butyl isophthalate units on thermal, tensile, and gas transport properties was evaluated. Both the melting temperature (Tm) and crystallinity were found to decrease steadily with copolymerization, whereas the glass‐transition temperature (Tg) increased and the polyesters became more brittle. Permeability and solubility slightly increased with the content in substituted isophthalic units, whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5‐tert‐butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters, suggesting that a different structure in the solid state is likely adopted in this case. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 92–100, 2005  相似文献   

9.
A series of poly(styrene‐blocktert‐butyl acrylate) heteroatom star block copolymers having various block lengths were prepared by atom transfer radical polymerization (ATRP), using an “as synthesized” cynurate modified trifunctional initiator. The structure of the star polymers was confirmed by the characterization of the individual arms resulting from hydrolysis. Amphiphilic poly(styrene‐block‐acrylic acid) star copolymers were further synthesized by hydrolyzing PtBA blocks using anhydrous trifluoroacetic acid. The characterization data are reported from analyses using gel permeation chromatography, infrared, 1H and 13C NMR spectroscopies. The stable micelle solution was prepared by dialyzing the solution of these polymers in N,N‐dimethylformamide against deionized water. The temperature‐induced associating behavior of these amphiphilic star polymers were studied using dynamic laser light scattering spectroscopy. The hydrodynamic diameter of both micelles and unassociated chains were obtained in the same solution using light scattering cumulant's calculation method. The homogeneity and the size distribution of the micelle population in the solution were determined using centrifuge/sedimentation particle size distribution analyzer. Field emission scanning electron microscope was used to visualize the size of the micelles formed and the micellar aggregates. The influence of the temperature on the viscosity of the micelle solution was studied using an Ubbelohde viscometer. Thermodynamics of micellization of these block copolymers were also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6367–6378, 2005  相似文献   

10.
A series of poly(2‐(dimethylamino)ethyl methacrylate‐ran‐9‐(4‐vinylbenzyl)‐9H‐carbazole) (poly(DMAEMA‐ran‐VBK)) random copolymers, with VBK molar feed compositions fVBK,0 = 0.02–0.09, were synthesized using 10 mol % [tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] nitroxide (SG1) relative to 2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropionic acid (BlocBuilder) at 80 °C and 90 °C. Controlled polymerizations were observed, even with fVBK,0 = 0.02, as reflected by a linear increase in number average molecular weight (Mn) versus conversion X ≤ 0.6 with final copolymers characterized by relatively narrow, monomodal molecular weight distributions (Mw/Mn ≈ 1.5). Poly(DMAEMA‐ran‐VBK) copolymers were deemed sufficiently pseudo‐“living” to reinitiate a second batch of N,N‐dimethylacrylamide (DMAA), with very few apparent dead chains, as indicated by the monomodal shift in the gel permeation chromatography chromatograms. Poly(DMAEMA‐ran‐VBK) random copolymers exhibited tuneable lower critical solution temperature (LCST), in aqueous solution, by modifying copolymer composition, solution pH and by the addition of the water‐soluble poly(DMAA) segment. 1H NMR analysis determined that, in water, the VBK units of the poly(DMAEMA‐ran‐VBK) random copolymer were segregated to the interior of the copolymer aggregate regardless of solution temperature and that poly(DMAEMA‐ran‐VBK)‐b‐poly(DMAA) block copolymers formed micelles above the LCST. In addition, the final random copolymer and block copolymer exhibited temperature dependent fluorescence due to the VBK units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
In this study, new nitroxides based on the 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐oxy skeleton were used to examine chain‐end control during the preparation of polystyrene and poly(t‐butyl acrylate) under living free‐radical conditions. Alkoxyamine‐based initiators with a chromophore attached to either the initiating fragment or the mediating nitroxide fragment were prepared, and the extent of the incorporation of the chromophores at either the initiating end or the propagating chain end was determined. In contrast to 2,2,6,6‐tetramethyl piperidinoxy (TEMPO), the incorporation of the initiating and terminating fragment into the polymer chain was extremely high. For both poly(t‐butyl acrylate) and polystyrene with molecular weights less than or equal to 70,000, incorporations at the initiating end of greater than 97% were observed. At the terminating chain end, incorporations of greater than 95% were obtained for molecular weights less than or equal to 50,000. The level of incorporation tended to decrease slightly at higher molecular weights because of the loss of the alkoxyamine propagating unit, which had important consequences for block copolymer formation. These results clearly show that these new α‐H nitroxides could control the polymerization of vinyl monomers such as styrene and t‐butyl acrylate to an extremely high degree, comparable to anionic and atom transfer radical polymerization procedures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4749–4763, 2000  相似文献   

12.
In this contribution, we report on the self‐assembly in water of original amphiphilic poly(2‐methyl‐2‐oxazoline)‐b‐poly(tert‐butyl acrylate) copolymers, synthesized by copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction. For such purpose, (poly(2‐methyl‐2‐oxazoline)) and (poly(tert‐butyl acrylate)) are first prepared by cationic ring‐opening polymerization and atom transfer radical polymerization, respectively. Well‐defined polymeric building blocks, ω‐N3‐P(t‐BA) and α‐alkyne‐P(MOx), bearing reactive chain end groups, are accurately characterized by matrix‐assisted laser desorption ionization time‐of‐flight spectroscopy. Then, P(MOx)nb‐P(t‐BA)m are achieved by polymer–polymer coupling and are fully characterized by diffusion‐ordered NMR spectroscopy and size exclusion chromatography, demonstrating the obtaining of pure amphiphilic copolymers. Consequently, the latter lead to the formation in water of well‐defined monodisperse spherical micelles (RH = 40–60 nm), which are studied by fluorescence spectroscopy, static light scattering, atomic force microscope, and transmission electronic microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
The intermolecular hydrogen‐bonding interaction and miscibility between enzymatically prepared novel polyphenols [poly(bisphenol A) and poly(ptert‐butyl phenol)] and poly(ε‐caprolactone) (PCL) were investigated as a function of composition by Fourier transform infrared spectroscopy (FTIR) and DSC. The blend films of PCL and polyphenols were prepared by casting polymer solution. The FTIR spectra clearly indicated that PCL and polyphenols interact through strong intermolecular hydrogen bonds formed between the PCL carbonyls and the polyphenol hydroxyl groups. The melting point and degree of crystallinity of the PCL component decreased with an increased polyphenol content. A single glass‐transition temperature was observed for the blend, and its value increased with the content of polyphenol, indicating that PCL and polyphenols are miscible in the amorphous state. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2898–2905, 2001  相似文献   

14.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Peptide–polymer conjugates are versatile class of biomaterials composed of a peptide block covalently linked with a synthetic polymer block. This report demonstrates the synthesis of peptide‐poly(tert‐butyl methacrylate) (Peptide‐PtBMA) conjugates of varying molecular weights via a “grafting from” atom transfer radical polymerization (ATRP) technique using as‐synthesized peptide‐based initiator in toluene. Peptide‐PtBMA conjugate is soluble in many organic solvents and undergoes self‐assembly into micro/nanospheres in DMF/THF as observed from both FESEM and DLS results. The conjugate micro/nanospheres are nothing but the composite micelles formed by the secondary aggregation of primary micelles generated initially in these organic solvents. The hydrolysis of tert‐butyl groups of Peptide‐PtBMA conjugate leads to the formation of peptide‐poly(methacrylic acid) (Peptide‐PMA) conjugate. The circular dichroism (CD) analysis exhibits the presence of β‐sheet conformation of peptide moiety in synthesized conjugates. The formed Peptide‐PMA conjugate is soluble in water and owing to its amphiphilic character, the conjugate molecules self‐assemble into spherical micelles as well as worm‐like micelles upon increasing the concentration of conjugate in water. However, the sodium salt of Peptide‐PMA conjugates (Peptide‐PMAS) self‐assembles into only spherical swollen micelles in water at higher (pH ~10). The critical aggregation concentrations (CACs) of both Peptide‐PMA and Peptide‐PMAS micelles are measured by fluorescence spectroscopy. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3019–3031  相似文献   

16.
Amphiphilic random copolymers based on vinyl ether of ethylene glycol and vinyl butyl ether as well as their polycomplexes with poly(acrylic acid) were studied as polymeric reagents for the stabilization of water/n‐hexane emulsions. The emulsion stability strongly depended on the content of vinyl butyl ether in the copolymers as well as their concentration in solution. The more hydrophobic copolymers stabilized emulsions more efficiently. An increase in the temperature and the addition of inorganic salts reduced the emulsion lifetime. The formation of interpolymer complexes between the copolymers and poly(acrylic acid) significantly influenced the stability of the emulsions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2625–2632, 2004  相似文献   

17.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   

18.
The multi‐thermo‐responsive block copolymer of poly[2‐(2‐methoxyethoxy)ethyl methacrylate]‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PMEO2MA‐b‐PVEA) displaying phase transition at both the lower critical solution temperature (LCST) and the upper critical solution temperature (UCST) in the alcohol/water mixture is synthesized by reversible addition‐fragmentation chain transfer polymerization. The poly[2‐(2‐methoxyethoxy)ethyl methacrylate] (PMEO2MA) block exhibits the UCST phase transition in alcohol and the LCST phase transition in water, while the poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PVEA) block shows the UCST phase transition in isopropanol and the LCST phase transition in the alcohol/water mixture. Both the polymer molecular weight and the co‐solvent/nonsolvent exert great influence on the LCST or UCST of the block copolymer. By adjusting the solvent character including the water content and the temperature, the block copolymer undergoes multiphase transition at LCST or UCST, and various block copolymer morphologies including inverted micelles, core‐corona micelles, and corona‐collapsed micelles are prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4399–4412  相似文献   

19.
The miscibility of tetramethylpolycarbonate (TMPC) blends with styrenic copolymers containing various methacrylates was examined, and the interaction energies between TMPC and methacrylate were evaluated from the phase‐separation temperatures of TMPC/copolymer blends with lattice‐fluid theory combined with a binary interaction model. TMPC formed miscible blends with styrenic copolymers containing less than a certain amount of methacrylate, and these miscible blends always exhibited lower critical solution temperature (LCST)‐type phase behavior. The phase‐separation temperatures of TMPC blends with copolymers such as poly(styrene‐co‐methyl methacrylate), poly(styrene‐co‐ethyl methacrylate), poly(styrene‐con‐propyl methacrylate), and poly(styrene‐co‐phenyl methacrylate) increase with methacrylate content, go through a maximum, and decrease, whereas those of TMPC blends with poly(styrene‐con‐butyl methacrylate) and poly(styrene‐co‐cyclohexyl methacrylate) always decrease. The calculated interaction energy for a copolymer–TMPC pair is negative and increases with the methacrylate content in the copolymer. This would seem to contradict the prediction of the binary interaction model, that systems with more favorable energetic interactions have higher LCSTs. A detailed inspection of lattice‐fluid theory was performed to explain such phase behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1288–1297, 2002  相似文献   

20.
We investigated the compatibility of blends of 1,4‐rich polyisoprene (1,4‐PI) and poly(4‐n‐alkylstyrene)s with six kinds of n‐alkyl side groups, that is, methyl, ethyl, propyl, butyl, hexyl, and octyl focusing on carbon number of alkyl groups. Poly(4‐methylstyrene)/1,4‐PI blend was turned out to be immiscible at all temperature range adopted in this work and poly(4‐ethylstyrene)/1,4‐PI blend revealed UCST type phase behavior, while the others were found to be compatible. The phase diagrams of poly(4‐ethylstyrene)/1,4‐PI blends were obtained by optical microscopy, and the temperature dependence of the Flory‐Huggins interaction parameter χ has been estimated to be χ = ?0.036 + 24/T by applying lattice theory, where T is the absolute temperature. From this relationship χ value at room temperature (298 K) was calculated to be 0.045, the value is reasonably low for miscible polymers system. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1791–1797  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号