首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
Hole transporting polymers were prepared by condensation polymerization of triphenylamine and N,N,N',N'‐tetraphenylbenzidine (TPD) having alkyl group with aldehydes in the presence of p‐toluenesulfonic acid. The obtained polymers had molecular weight higher than 10,000 and good film formation ability. It was found that the aromatic amine monomers were connected with aldehyde monomer at the p‐position of the phenyl group. TPD‐aldehyde polymers had almost the same UV absorption and redox potentials as those of TPD monomer indicating that the electronic structure of amine unit did not change by the polymerization. The hole transporting mobility was in the range of 10−3‐10−6cm2/Vs. The electroluminescent device consisting of ITO/TPD polymer/Alq/Mg‐Ag had a maximum luminance of 9000 cd/m2.  相似文献   

2.
We have synthesized novel σ–π conjugated polymers with N,N‐bis(p‐ethynylphenyl)‐N‐(p‐tolyl)amine as the π‐unit. The electroluminescent devices, with a double‐layer system composed of Alq and the present polymers as the emitting‐electron‐transporting and hole‐transporting layers respectively, emit green electroluminescence with a maximum intensity of 760 cd m?2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
We have synthesized novel σπ conjugated polymers with an alternating organosilanylene and π‐electron system, intending to utilize them for hole‐transporting materials of electroluminescent (EL) devices. 3,6‐Di(lithioethynyl)carbazoles were co‐polymerized with organodichlorosilanes to give the corresponding polymers with molecular weights of MW = 2000–5000. Another type of polymer with a thienylene unit was also synthesized by the nickel‐catalyzed reaction of the di‐Grignard reagent of 1,2‐bis[2‐(5‐bromothienyl)]tetraethyldisilane with 3,6‐dibromocarbazole, the molecular weight being Mn = 3100. The EL devices with a double‐layer system composed of tris(8‐quinolinolato)aluminum(III) and the present polymers as the emitting‐electron‐transporting and hole‐transporting layers, respectively, emit green EL with a maximum intensity of the order of 103 cd m?2. Of these, the device with the thienylene–carbazole polymers exhibited the highest luminance of 1480 cd m?2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A series of multilayer polymeric light‐emitting diodes (PLEDs) containing an electron‐transporting layer (ETL), that is tris(8‐quinolinolato)‐aluminum(III) (Alq) and 2,2′,2″‐(1,3,5‐phenylene)‐tris[1‐phenyl‐1H‐benzimidazole] (TPBI), were fabricated by doping fluorescent oligo(p‐phenylene‐vinylene)s (BIII and BV) and polymer derivatives (PBV) into poly(N‐vinyl carbazole) (PVK). These PLEDs can be optimized by the design of multilayer device configurations (brightness increased 8–15 times by addition of ETL) and possess greenish electroluminescent (EL) spectra peaked about 500–540 nm. A remarkably high brightness of 56,935 cd/m2 with a power efficiency of 3.25 lm/W was obtained in the device of PVK:BVOC8‐OC8 (100:20)/Alq (60 nm/60 nm). It suggests that the emission mechanism (including the conjugated and excimer emissions of BVOC8‐OC8 emitters) originates from both of BVOC8‐OC8 and ETL (Alq and TPBI) by varying the concentration of chromophores and adjusting the thickness of ETL. The concentration effect of the emitters in PVK (i.e. PVK:BVOC8‐OC8 = 100:5, 100:20, and 100:100 wt %) and the influence of the ETL (including its thickness) on the EL characteristics are also reported. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2922–2936, 2006  相似文献   

6.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

7.
Electroluminescent(EL) devices have been fabricated using four different polymers with different glass transition temperatures (Tg) dispersed with N,N′-bis-(3-methylphenyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (TPD) as a hole transport layer and tris(8-hydroxyquinoline) aluminum (Alq3) as an emitting layer. It was found that the higher the Tg of the polymer, the longer the lifetime of the device. From observations of TPD-doped polymer films with optical microscope and atomic force microscope, dispersing TPD in the polymers was found to suppress the crystallization that causes the roughness of the film surface. It was also observed that the higher the Tg of the host polymers, the more difficult TPD crystallization was. The property of the EL device with polyethersulfone (PES) dispersed with TPD was also investigated. The lifetime of EL device with the TPD doped PES film was improved more than five times at a current density below 10 mA/cm2 compared with the device with a conventional TPD hole transport layer. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A polymer containing donorN-epoxypropylcarbazolyl groups and the acceptor tris(8-quinolinolato) aluminum (Alq3) was shown to form a light-sensitive, acid-producing polymeric composition. The acid in the presence of 8-quinolinol (8-hydroxyquinoline) ensured photochemical dissolution of aluminum in the polyeric layer, yielding additionally organic aluminum complexes, such as Alq3, Alq2+, and Alq 2 + , and Alq3-con-taining polymers. This led to a emergence of electroluminescence (EL) upon application of a potential difference to a sandwich diode representing transparent anode/exposed polymer layer/aluminum cathode. Electroluminescence did not appear at an Alq3 concentration of 6 wt % and less in the composition, and only partial dissolution of the aluminum film after its deposition on the exposed polymeric layer provided the emergence of EL whose intensity increased with increasing the dose absorbed by the polymer. The addition of the chemical sensitizer dimethylaminobenzaldehyde to the composition triggered the conventional process of chemical amplification which consists in thermal buildup of the acid in exposed area. This provided a significant increase in concentration of organoaluminum complexes and enhancement of EL intensity.  相似文献   

10.
Three series of poly(phenylene vinylene) (PPV) derivatives containing hole‐transporting triphenylamine derivatives [N‐(4‐octoxylphenyl)diphenylamine, N,N′‐di(4‐octyloxylphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, and N,N′‐di(4‐octoxylphenyl)‐N,N′‐diphenylbenzidine] (donor) and electron‐transporting oxadiazole unit (2,5‐diphenyl‐1,3,4‐oxadiazole) (acceptor) in the main chain were synthesized by improved Wittig copolymerization. The resulting donor–acceptor (D‐A) polymers are readily soluble in common organic solvents, such as chloroform, dichloroethane, THF, and toluene. The polymers containing oxadiazole group exhibit good thermal stability with 5% weight loss above 400 °C. The intramolecular charge‐transfer was observed in these D‐A polymers. In comparison with corresponding polymers without oxadiazole unit, the single‐layer devices based on the D‐A polymers showed much improved electroluminescent properties, because of the balanced charge injection and transport. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1566–1576, 2008  相似文献   

11.
The new poly(arylene vinylene) derivatives, which are composed of biphenylene vinylene phenylene vinylene, biphenylene vinylene m‐phenylene vinylene, terphenylene vinylene phenylene vinylene, and terphenylene vinylene m‐phenylene vinylene as backbone and bulky fluorene pendants at each vinyl bridge, were designed, synthesized, and characterized. The obtained polymers showed weight‐average molecular weights of 11,100–39,800 with polydispersity indexes ranging from 1.5 to 2.1. The resulting polymers were amorphous with high thermal stability and readily soluble in common organic solvents. The obtained polymers showed blue emission (λmax = 456–475 nm) in PL spectra, and polymer 4 containing terphenylene vinylene m‐phenylene vinylene showed the most blue shifted blue emission (λmax = 456 nm). The double layer light‐emitting diode devices fabricated by using obtained polymers as emitter emitted bright blue light. The device showed turn on voltage around 6.5 V and brightness of 70–250 cd/m2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4923–4931, 2006  相似文献   

12.
Electroluminescent devices were fabricated using a holetransporting polymer, poly[N-[p-N′ -phenyl-N′-[1,1′-biphenyl-4′-[N″-phenyl-N″-(2-methylphenyl)amino]-4-amino]]phenyl methacrylamide] (PTPDMA), and tris(8-quinolinolato)aluminum(III) complex, Alq, as the hole transport layer and the emitter layer, respectively. A device structure of glass substrate/indium–tin–oxide/PTPDMA/Alq/Mg:Ag was employed. Hole injection from the electrode through the PTPDMA layer to the Alq layer and concomitant electroluminescence from the Alq layer were observed. Bright green luminescence with a luminance of 20,000 cd/m2 was obtained at a drive voltage of 14 V.  相似文献   

13.
New poly(p‐phenylenevinylene) (PPV) derivatives ( polymer 1 and 2 ) that carry hole‐transporting carbazole and electron‐transporting phenyloxadiazole pendants were synthesized and their photo‐ and electroluminescence properties were studied. Polymer 1 is poly[2‐(N‐carbazolyl)‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] that has both carbazole and 2‐ethylhexyl pendant groups. And polymer 2 is poly[2‐{4‐[5‐(4‐t‐butylphenyl)‐1,3,4‐oxadiazolyl]phenyl}‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene], which bears the 2‐(4‐t‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole pendants. The optical properties of the polymer films were studied by UV‐vis absorption, photoluminescence (PL) and electroluminescence (EL) spectroscopy. EL devices with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thienylene) (PEDOT) polymer/Ca/Al were constructed and the device performances were compared. Polymer 1 emits bright yellowish green light (λmax = 530 nm), whereas polymer 2 emits yellowish orange (λmax = 540 nm) light. The device fabricated using polymer 1 showed a low turn‐on electric field of 0.31 MV/cm and the maximum luminance of 30,390 cd/m2 at 1.50 MV/cm. Polymer 2 exhibited a little poorer device performance (turn‐on electric field: 0.94 MV/cm; maximum luminance: 5,720 cd/m2 at 2.74 MV/cm). Maximum photometric efficiencies of the devices were 4.4 and 1.3 cd/A, respectively.  相似文献   

14.
We synthesized new polynorbornene dicarboximide (PCaNI) functionalized with hole‐transporting carbazole moieties and its copolymer (PCaNA) by ring‐opening metathesis polymerization (ROMP), where the PCaNA was further reacted with 3‐amino‐triethoxysilane to prepare PCaNI/silica hybrid. We also investigated the feasibility of PCaNI and PCaNI/silica hybrid (PCaSi) as a hole‐transporting material for hybrid organic light emitting devices (HOLEDs). To improve the performance of the PCaNI‐based HOLEDs, N,N′‐diphenyl‐N,N′‐(3‐methylphenyl)‐[1,1′‐biphenyl]‐4‐4′‐diamine (TPD) was also introduced into the PCaNI matrix. Results showed that PCaNI exhibited high glass transition temperature (~260 °C) and high optical transparency in the visible region. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of PCaNI were measured as 5.6 and 2.2 eV, while the TPD‐doped PCaNI showed 5.7 eV (HOMO) and 2.6 eV (LUMO). The PCaNI/silica hybrid nanolayers showed excellent solvent resistance due to the formation of covalent bonds between ITO and PCaNI. The HOLEDs with PCaNI/TPD or PCaSi/TPD hybrid nanolayers exhibited relatively higher luminance (~10,000 cd/m2), lower operating voltage (~6.5 V at 300 cd/m2), and higher current efficiency (~2.7 cd/A). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
We investigated the lasing properties of optically pumped polymer films. Amplified spontaneous emission (ASE) around 400 nm was observed in polymer films of polystyrene (PS) and poly(N‐vinylcarbazole) (PVK) doped up to 20% with the hole‐transporting organic molecule N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine (TPD). Thus, TPD‐based films are candidates for blue‐emitting organic diode lasers. Films containing several semiconducting organic molecules and polymers and rare‐earth complexes were also investigated. Energy transfer was observed in PVK films doped with various europium and samarium complexes. PS films containing the electron‐transporting organic molecule 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole and small amounts of TPD also showed energy transfer to the europium complexes, but not to the samarium ones. None of these films demonstrated ASE; therefore, they are not appropriate for lasing purposes. However, because rare‐earth ions have very sharp emission spectra, these materials are candidates for very monochromatic light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2706–2714, 2003  相似文献   

16.
Four different types of conjugated copolymers, consisting of alternating structures of phenothiazinylene vinylene and phenylene vinylene derivatives such as phenylene vinylene, 1,1′‐biphenyl‐4,4′‐ylene vinylene, 2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene, and 9,10‐anthrylene vinylene, were prepared by Horner–Emmons condensation between appropriate diphosphonates and dialdehydes. Single‐layer and double‐layer light‐emitting diodes were fabricated with the synthesized conjugated polymers, and their electroluminescent properties were investigated. Poly(N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐9,10‐anthrylene vinylene), containing phenothiazinylene vinylene and anthrylene vinylene as repeat units, emitted a reddish‐orange color with Commission Internationale de l'Eclairage coordinates of x = 0.6173 and y = 0.3814 that was very similar to the National Television System Committee standard red, and it showed a bipolar carrier‐injection/transporting capability caused by electron‐withdrawing anthracene and electron‐donating amino groups. Poly[N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene], containing phenothiazinylene vinylene and dialkoxy phenylene vinylene moieties, showed excellent hole‐injection/transporting capability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2502–2511, 2003  相似文献   

17.
Two vinyl homopolymers poly(N‐(4‐(4‐(4‐vinylbenzyloxy)styryl)phenyl)‐N‐phenylbenzenamine) (PVST ) and poly(4‐vinyltriphenylamine) (PTPA ) containing pendant hole‐transporting triphenylamine and 4‐oxystyryltriphenylamine groups, respectively, were synthesized by radical polymerization and employed as hosts for tris(2‐phenylpyridine) iridium [Ir(ppy)3] phosphor. Structural influences of the hole‐transporting groups upon optoelectronic properties were investigated by photophysical, electrochemical, and electroluminescent methods. The polymers were readily soluble in common organic solvents and their weight‐average molecular weights (Mw) were 5.68 × 104 and 1.90 × 104, respectively. The emission spectra (both photoluminescence, PL and electroluminescent, EL) of the blends [PTPA with 4 wt % Ir(ppy)3] showed dominant green emission (517 nm) attributed to Ir(ppy)3 due to efficient energy transfer from PTPA to Ir(ppy)3. The HOMO levels of PVST and PTPA, estimated from onset oxidation potentials in their cyclic voltammograms, were ?5.14 and ?5.36 eV, which are much higher than ?5.8 eV of the conventional poly(9‐vinylcarbazole) (PVK) host owing to high hole‐affinity of the triphenylamine groups. The optoelectronic performances of phosphorescent EL devices, using PVST and PTPA as hosts and Ir(ppy)3 as dopant (indium tin oxide, ITO/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)/PVST or PTPA:Ir(ppy)3(4 wt %):PBD(40 wt %)/BCP/Ca/Al), were investigated. The maximum luminance and luminance efficiency of the PTPA device were 9220 cd/m2 and 6.1 cd/A, respectively, which were significantly improved relative to those of PVK and PVST. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7960–7971, 2008  相似文献   

18.
A novel oligothiophene derivative containing the triphenylamine moiety with high glass transition temperature (Tg; 135 °C), 5,5′‐{bis[4‐di(4‐thiophenyl)amino]phenyl}‐2,2′‐bithiophene (TTPA‐dimer) was synthesized by the dimerization of tris[4‐(2‐thienyl)phenyl]amine (TTPA) with a palladium catalysis. Some types of electroluminescent (EL) devices that use the amorphous material for a hole‐ and an electron‐transporting with an emitting layer were fabricated. These devices emitted a bright green‐yellowish light (λemi; around 510 nm) with a small full width at half maximum (FWHM) rather than that of Alq3. The single layer EL device showed a maximum luminance of 221 cd/m2 at 8 V (0.06 lm/W at 100 cd/m2). On the other hand, the double layer (TTPA‐dimer/Alq3) EL device that used Alq3 as the electron transport material was increased up to 10830 cd/m2 at 12 V (0.89 lm/W at 300 cd/m2) and with a lower turn‐on voltage (3.2 V at 0.1 cd/m2) than other types of EL devices. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

20.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号