首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the following variant of the classical random graph process introduced by Erd?s and Rényi. Starting with an empty graph on n vertices, choose the next edge uniformly at random among all edges not yet considered, but only insert it if the graph remains planar. We show that for all ε > 0, with high probability, θ(n2) edges have to be tested before the number of edges in the graph reaches (1 + ε)n. At this point, the graph is connected with high probability and contains a linear number of induced copies of any fixed connected planar graph, the first property being in contrast and the second one in accordance with the uniform random planar graph model. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

2.
In this article we investigate properties of the class of all l-colorable graphs on n vertices, where l = l(n) may depend on n. Let Gln denote a uniformly chosen element of this class, i.e., a random l-colorable graph. For a random graph Gln we study in particular the property of being uniquely l-colorable. We show that not only does there exist a threshold function l = l(n) for this property, but this threshold corresponds to the chromatic number of a random graph. We also prove similar results for the class of all l-colorable graphs on n vertices with m = m(n) edges.  相似文献   

3.
A geometric graph is a graph drawn in the plane so that the vertices are represented by points in general position, the edges are represented by straight line segments connecting the corresponding points. Improving a result of Pach and T?rőcsik, we show that a geometric graph on n vertices with no k+1 pairwise disjoint edges has at most k 3 (n+1) edges. On the other hand, we construct geometric graphs with n vertices and approximately (3/2)(k-1)n edges, containing no k+1 pairwise disjoint edges. We also improve both the lower and upper bounds of Goddard, Katchalski, and Kleitman on the maximum number of edges in a geometric graph with no four pairwise disjoint edges. Received May 7, 1998, and in revised form March 24, 1999.  相似文献   

4.
We consider a random graph that evolves in time by adding new edges at random times (different edges being added at independent and identically distributed times). A functional limit theorem is proved for a class of statistics of the random graph, considered as stochastic processes. the proof is based on a martingale convergence theorem. the evolving random graph allows us to study both the random graph model Kn, p, by fixing attention to a fixed time, and the model Kn, N, by studying it at the random time it contains exactly N edges. in particular, we obtain the asymptotic distribution as n → ∞ of the number of subgraphs isomorphic to a given graph G, both for Kn, p (p fixed) and Kn, N (N/(n2)→ p). the results are strikingly different; both models yield asymptotically normal distributions, but the variances grow as different powers of n (the variance grows slower for Kn, N; the powers of n usually differ by 1, but sometimes by 3). We also study the number of induced subgraphs of a given type and obtain similar, but more complicated, results. in some exceptional cases, the limit distribution is not normal.  相似文献   

5.
The edges of the random graph (with the edge probabilityp=1/2) can be covered usingO(n 2lnlnn/(lnn)2) cliques. Hence this is an upper bound on the intersection number (also called clique cover number) of the random graph. A lower bound, obtained by counting arguments, is (1–)n 2/(2lgn)2.Research supported in part by ONR Grant N00014-85K0570 and by NSA/MSP Grant MDA904-90-H-4011.  相似文献   

6.
Recently, Bollobás, Janson and Riordan introduced a family of random graph models producing inhomogeneous graphs with n vertices and Θ(n) edges whose distribution is characterized by a kernel, i.e., a symmetric measurable function κ: [0, 1]2 → [0, ∞). To understand these models, we should like to know when different kernels κ give rise to “similar” graphs, and, given a real‐world network, how “similar” is it to a typical graph G(n, κ) derived from a given kernel κ. The analogous questions for dense graphs, with Θ(n2) edges, are answered by recent results of Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi, who showed that several natural metrics on graphs are equivalent, and moreover that any sequence of graphs converges in each metric to a graphon, i.e., a kernel taking values in [0, 1]. Possible generalizations of these results to graphs with o(n2) but ω(n) edges are discussed in a companion article [Bollobás and Riordan, London Math Soc Lecture Note Series 365 (2009), 211–287]; here we focus only on graphs with Θ(n) edges, which turn out to be much harder to handle. Many new phenomena occur, and there are a host of plausible metrics to consider; many of these metrics suggest new random graph models and vice versa. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 1‐38, 2011  相似文献   

7.
The NP‐hard graph bisection problem is to partition the nodes of an undirected graph into two equal‐sized groups so as to minimize the number of edges that cross the partition. The more general graph l‐partition problem is to partition the nodes of an undirected graph into l equal‐sized groups so as to minimize the total number of edges that cross between groups. We present a simple, linear‐time algorithm for the graph l‐partition problem and we analyze it on a random “planted l‐partition” model. In this model, the n nodes of a graph are partitioned into l groups, each of size n/l; two nodes in the same group are connected by an edge with some probability p, and two nodes in different groups are connected by an edge with some probability r<p. We show that if prn−1/2+ϵ for some constant ϵ, then the algorithm finds the optimal partition with probability 1− exp(−nΘ(ε)). © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 116–140, 2001  相似文献   

8.
Let ℋ︁ be a family of graphs. A graph T is ℋ︁‐universal if it contains a copy of each H ∈ℋ︁ as a subgraph. Let ℋ︁(k,n) denote the family of graphs on n vertices with maximum degree at most k. For all positive integers k and n, we construct an ℋ︁(k,n)‐universal graph T with edges and exactly n vertices. The number of edges is almost as small as possible, as Ω(n2‐2/k) is a lower bound for the number of edges in any such graph. The construction of T is explicit, whereas the proof of universality is probabilistic and is based on a novel graph decomposition result and on the properties of random walks on expanders. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

9.
We shall prove that if L is a 3-chromatic (so called “forbidden”) graph, and —Rn is a random graph on n vertices, whose edges are chosen independently, with probability p, and —Bn is a bipartite subgraph of Rn of maximum size, —Fn is an L-free subgraph of Rn of maximum size, then (in some sense) Fn and Bn are very near to each other: almost surely they have almost the same number of edges, and one can delete Op(1) edges from Fn to obtain a bipartite graph. Moreover, with p = 1/2 and L any odd cycle, Fn is almost surely bipartite.  相似文献   

10.
We study a model of random graph where vertices are n i.i.d. uniform random points on the unit sphere Sd in , and a pair of vertices is connected if the Euclidean distance between them is at least 2??. We are interested in the chromatic number of this graph as n tends to infinity. It is not too hard to see that if ?>0 is small and fixed, then the chromatic number is d+2 with high probability. We show that this holds even if ?→0 slowly enough. We quantify the rate at which ? can tend to zero and still have the same chromatic number. The proof depends on combining topological methods (namely the Lyusternik–Schnirelman–Borsuk theorem) with geometric probability arguments. The rate we obtain is best possible, up to a constant factor—if ?→0 faster than this, we show that the graph is (d+1)‐colorable with high probability.25  相似文献   

11.
Consider the random graph process that starts from the complete graph on n vertices. In every step, the process selects an edge uniformly at random from the set of edges that are in a copy of a fixed graph H and removes it from the graph. The process stops when no more copies of H exist. When H is a strictly 2‐balanced graph we give the exact asymptotics on the number of edges remaining in the graph when the process terminates and investigate some basic properties namely the size of the maximal independent set and the presence of subgraphs.  相似文献   

12.
We study the phase transition of the minimum degree multigraph process. We prove that for a constant hg ≈︁ 0.8607, with probability tending to 1 as n, the graph consists of small components on O(log n) vertices when the number of edges of a graph generated so far is smaller than hgn, the largest component has order roughly n2/3 when the number of edges added is exactly hgn, and the graph consists of one giant component on Θ(n) vertices and small components on O(log n) vertices when the number of edges added is larger than hgn. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

13.
The Erd?s‐Rényi process begins with an empty graph on n vertices, with edges added randomly one at a time to the graph. A classical result of Erd?s and Rényi states that the Erd?s‐Rényi process undergoes a phase transition, which takes place when the number of edges reaches n/2 (we say at time 1) and a giant component emerges. Since this seminal work of Erd?s and Rényi, various random graph models have been introduced and studied. In this paper we study the Bohman‐Frieze process, a simple modification of the Erd?s‐Rényi process. The Bohman‐Frieze process also begins with an empty graph on n vertices. At each step two random edges are presented, and if the first edge would join two isolated vertices, it is added to a graph; otherwise the second edge is added. We present several new results on the phase transition of the Bohman‐Frieze process. We show that it has a qualitatively similar phase transition to the Erd?s‐Rényi process in terms of the size and structure of the components near the critical point. We prove that all components at time tc ? ? (that is, when the number of edges are (tc ? ?)n/2) are trees or unicyclic components and that the largest component is of size Ω(?‐2log n). Further, at tc + ?, all components apart from the giant component are trees or unicyclic and the size of the second‐largest component is Θ(?‐2log n). Each of these results corresponds to an analogous well‐known result for the Erd?s‐Rényi process. Our proof techniques include combinatorial arguments, the differential equation method for random processes, and the singularity analysis of the moment generating function for the susceptibility, which satisfies a quasi‐linear partial differential equation. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

14.
Limiting distributions are derived for the sparse connected components that are present when a random graph on n vertices has approximately 1/2n edges. In particular, we show that such a graph consists entirely of trees, unicyclic components, and bicyclic components with probability approaching √2/3 cosh √5/18 ≈ 0.9325 as n→∞. The limiting probability that it is consists of trees, unicyclic components, and at most one another component is approximately 0.9957; the limiting probability that it is planar lies between 0.987 and 0.9998. When a random graph evolves and the number of edges passes 1/2n, its components grow in cyclic complexity according to an interesting Markov process whose asymptotic structure is derived. The probability that there never is more than a single component with more edges than vertices, throughout the veolution, approaches 5 π/18 ≈ 0.8727. A “uniform” model of random graphs, which allows self-loops and multiple edges, is shown to lead to formulas that are substanitially simpler than the analogous formulas for the classical random graphs of Erdõs and Rényi. The notions of “excess” and “deficiency,” which are significant characteristics of the generating function as well as of the graphs themselves, lead to a mathematically attractive structural theory for the uniform model. A general approach to the study of stopping configurations makes it possible to sharpen previously obtained estimates in a uniform manner and often to obtain closed forms for the constants of interest. Empirical results are presented to complement the analysis, indicating the typical behavior when n is near 2oooO. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Enumeration of spanning trees of an undirected graph is one of the graph problems that has received much attention in the literature. In this paper a new enumeration algorithm based on the idea of contractions of the graph is presented. The worst-case time complexity of the algorithm isO(n+m+nt) wheren is the number of vertices,m the number of edges, andt the number of spanning trees in the graph. The worst-case space complexity of the algorithm isO(n 2). Computational analysis indicates that the algorithm requires less computation time than any other of the previously best-known algorithms.  相似文献   

16.
We consider the complete graph on n vertices whose edges are weighted by independent and identically distributed edge weights and build the associated minimum weight spanning tree. We show that if the random weights are all distinct, then the expected diameter of such a tree is Θ(n1/3). This settles a question of Frieze and Mc‐Diarmid (Random Struct Algorithm 10 (1997), 5–42). The proofs are based on a precise analysis of the behavior of random graphs around the critical point. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

17.
We study the behavior of a random graph process (G(n, M))02n for M(n) = n/2 + s and ∣s3n?;2 → ∞. Among others we find the number of components in G(n, M) and estimate the number of vertices and edges in the kth largest component of G(n, M), for any natural number k, Moreover, it is shown that, with probability 1 –o(1), when M(n) = n/2 + s, s3n?2 →?∞, then during a random graph process in some step M1 > M a “new” largest component will emerge, whereas when s3n?2→∞, the largest component of G(n, M) remains largest until the very end of the process.  相似文献   

18.
Conditions are found under which the expected number of automorphisms of a large random labelled graph with a given degree sequence is close to 1. These conditions involve the probability that such a graph has a given subgraph. One implication is that the probability that a random unlabelledk-regular simple graph onn vertices has only the trivial group of automorphisms is asymptotic to 1 asn → ∞ with 3≦k=O(n 1/2−c). In combination with previously known results, this produces an asymptotic formula for the number of unlabelledk-regular simple graphs onn vertices, as well as various asymptotic results on the probable connectivity and girth of such graphs. Corresponding results for graphs with more arbitrary degree sequences are obtained. The main results apply equally well to graphs in which multiple edges and loops are permitted, and also to bicoloured graphs. Research of the second author supported by U. S. National Science Foundation Grant MCS-8101555, and by the Australian Department of Science and Technology under the Queen Elizabeth II Fellowships Scheme. Current address: Mathematics Department, University of Auckland, Auckland, New Zealand.  相似文献   

19.
The “classical” random graph models, in particular G(n,p), are “homogeneous,” in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, power‐law degree distributions. Thus there has been a lot of recent interest in defining and studying “inhomogeneous” random graph models. One of the most studied properties of these new models is their “robustness”, or, equivalently, the “phase transition” as an edge density parameter is varied. For G(n,p), p = c/n, the phase transition at c = 1 has been a central topic in the study of random graphs for well over 40 years. Many of the new inhomogeneous models are rather complicated; although there are exceptions, in most cases precise questions such as determining exactly the critical point of the phase transition are approachable only when there is independence between the edges. Fortunately, some models studied have this property already, and others can be approximated by models with independence. Here we introduce a very general model of an inhomogeneous random graph with (conditional) independence between the edges, which scales so that the number of edges is linear in the number of vertices. This scaling corresponds to the p = c/n scaling for G(n,p) used to study the phase transition; also, it seems to be a property of many large real‐world graphs. Our model includes as special cases many models previously studied. We show that, under one very weak assumption (that the expected number of edges is “what it should be”), many properties of the model can be determined, in particular the critical point of the phase transition, and the size of the giant component above the transition. We do this by relating our random graphs to branching processes, which are much easier to analyze. We also consider other properties of the model, showing, for example, that when there is a giant component, it is “stable”: for a typical random graph, no matter how we add or delete o(n) edges, the size of the giant component does not change by more than o(n). © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 31, 3–122, 2007  相似文献   

20.
The edges of the complete graph on n vertices can be covered by ⌈lg n⌉ spanning complete bipartite subgraphs. However, the sum of the number of edges in these subgraphs is roughly (n2/4)lg n, while a cover consisting of n − 1 spanning stars uses only (n − 1)2 edges. We will show that the covering by spanning stars has the smallest total number of edges among all coverings of the clique by spanning complete bipartite subgraphs, except when n is 4 or 8. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 223–227, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号