首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We consider non-overlapping subgraphs of fixed order in the random graph Kn, p(n). Fix a strictly strongly balanced graph G. A subgraph of Kn, p(n) isomorphic to G is called a G-subgraph. Let Xn be the number of G-subgraphs of Kn, p(n) vertex disjoint to all other G-subgraphs. We show that if E[Xn]→∞ as n→, then Xn/E[Xn] converges to 1 in probability. Also, if E[Xn]→c as n→∞, then Xn satisfies a Poisson limit theorem. the Poisson limit theorem is shown using a correlation inequality similar to those appeared in Janson, ?uczak, and Ruciñski[8] and Boppana and Spencer [4].  相似文献   

2.
We consider the problem of finding a sparse set of edges containing the minimum spanning tree (MST) of a random subgraph of G with high probability. The two random models that we consider are subgraphs induced by a random subset of vertices, each vertex included independently with probability p, and subgraphs generated as a random subset of edges, each edge with probability p. Let n denote the number of vertices, choose p ∈ (0, 1) possibly depending on n, and let b = 1/(1 ? p). We show that in both random models, for any weighted graph G, there is a set of edges Q of cardinality O(n logbn) that contains the minimum spanning tree of a random subgraph of G with high probability. This result is asymptotically optimal. As a consequence, we also give a bound of O(kn) on the size of the union of all minimum spanning trees of G with some k vertices (or edges) removed. More generally, we show a bound of O(n logbn) on the size of a covering set in a matroid of rank n, which contains the minimum‐weight basis of a random subset with high probability. Also, we give a randomized algorithm that calls an MST subroutine only a polylogarithmic number of times and finds the covering set with high probability. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

3.
Let T(K1,r,Gn) be the number of monochromatic copies of the r‐star K1,r in a uniformly random coloring of the vertices of the graph Gn. In this paper we provide a complete characterization of the limiting distribution of T(K1,r,Gn), in the regime where is bounded, for any growing sequence of graphs Gn. The asymptotic distribution is a sum of mutually independent components, each term of which is a polynomial of a single Poisson random variable of degree at most r. Conversely, any limiting distribution of T(K1,r,Gn) has a representation of this form. Examples and connections to the birthday problem are discussed.  相似文献   

4.
Thep-intersection graph of a collection of finite sets {S i } i=1 n is the graph with vertices 1, ...,n such thati, j are adjacent if and only if |S i S j |p. Thep-intersection number of a graphG, herein denoted p (G), is the minimum size of a setU such thatG is thep-intersection graph of subsets ofU. IfG is the complete bipartite graphK n,n andp2, then p (K n, n )(n 2+(2p–1)n)/p. Whenp=2, equality holds if and only ifK n has anorthogonal double covering, which is a collection ofn subgraphs ofK n , each withn–1 edges and maximum degree 2, such that each pair of subgraphs shares exactly one edge. By construction,K n has a simple explicit orthogonal double covering whenn is congruent modulo 12 to one of {1, 2, 5, 7, 10, 11}.Research supported in part by ONR Grant N00014-5K0570.  相似文献   

5.
Every graph onn vertices can be covered byex(n, TK 4 ) =2n – 3 TK 4 -subgraphs and edges. A similar result might hold for arbitrary topological (complete) subgraphs as indicated by the following result: Every graph onn vertices can be covered by 65ex(n, TK p )TK p -subgraphs and edges. IfH is a connected graph (|H| 3) then every graph onn vertices can be covered by 400ex(n, TH) TH-subgraphs and edges. Similar questions for coverings by odd and even cycles are also considered.This author's work was done while he was a guest at the Hungarian Academy of Sciences.  相似文献   

6.
For a martingale (Xn) converging almost surely to a random variable X, the sequence (XnX) is called martingale tail sum. Recently, Neininger (Random Structures Algorithms 46 (2015), 346–361) proved a central limit theorem for the martingale tail sum of Régnier's martingale for the path length in random binary search trees. Grübel and Kabluchko (in press) gave an alternative proof also conjecturing a corresponding law of the iterated logarithm. We prove the central limit theorem with convergence of higher moments and the law of the iterated logarithm for a family of trees containing binary search trees, recursive trees and plane‐oriented recursive trees. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 493–508, 2017  相似文献   

7.
The irredundant Ramsey number s(m, n) is the smallest N such that in every red-blue coloring of the edges of KN, either the blue graph contains an m-element irredundant set or the red graph contains an n-element irredundant set. The definition of the mixed Ramsey number t(m, n) differs from s(m, n) in that the n-element irredundant set is replaced by an n-element independent set. We prove asymptotic lower bounds for s(n, n) and t(m, n) (with m fixed and n large) and a general upper bound for t(3, n). © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Vertex Partitions of K4,4-Minor Free Graphs   总被引:2,自引:0,他引:2  
 We prove that a 4-connected K 4,4-minor free graph on n vertices has at most 4n−8 edges and we use this result to show that every K 4,4-minor free graph has vertex-arboricity at most 4. This improves the case (n,m)=(7,3) of the following conjecture of Woodall: the vertex set of a graph without a K n -minor and without a -minor can be partitioned in nm+1 subgraphs without a K m -minor and without a -minor. Received: January 7, 1998 Final version received: May 17, 1999  相似文献   

9.
Consider the random graph process that starts from the complete graph on n vertices. In every step, the process selects an edge uniformly at random from the set of edges that are in a copy of a fixed graph H and removes it from the graph. The process stops when no more copies of H exist. When H is a strictly 2‐balanced graph we give the exact asymptotics on the number of edges remaining in the graph when the process terminates and investigate some basic properties namely the size of the maximal independent set and the presence of subgraphs.  相似文献   

10.
A former conjecture of Burr and Rosta [1], extending a conjecture of Erds [2], asserted that in any two-colouring of the edges of a large complete graph, the proportion of subgraphs isomorphic to a fixed graphG which are monochromatic is at least the proportion found in a random colouring. It is now known that the conjecture fails for some graphsG, includingG=K p forp4.We investigate for which graphsG the conjecture holds. Our main result is that the conjecture fails ifG containsK 4 as a subgraph, and in particular it fails for almost all graphs.  相似文献   

11.
The minimal weight of a spanning tree in a complete graph Kn with independent, uniformly distributed random weights on the edges is shown to have an asymptotic normal distribution. The proof uses a functional limit extension of results by Barbour and Pittel on the distribution of the number of tree components of given sizes in a random graph.  相似文献   

12.
A decomposition ??={G1, G2,…,Gs} of a graph G is a partition of the edge set of G into edge‐disjoint subgraphs G1, G2,…,Gs. If Gi?H for all i∈{1, 2, …, s}, then ?? is a decomposition of G by H. Two decompositions ??={G1, G2, …, Gn} and ?={F1, F2,…,Fn} of the complete bipartite graph Kn,n are orthogonal if |E(Gi)∩E(Fj)|=1 for all i,j∈{1, 2, …, n}. A set of decompositions {??1, ??2, …, ??k} of Kn, n is a set of k mutually orthogonal graph squares (MOGS) if ??i and ??j are orthogonal for all i, j∈{1, 2, …, k} and ij. For any bipartite graph G with n edges, N(n, G) denotes the maximum number k in a largest possible set {??1, ??2, …, ??k} of MOGS of Kn, n by G. El‐Shanawany conjectured that if p is a prime number, then N(p, Pp+ 1)=p, where Pp+ 1 is the path on p+ 1 vertices. In this article, we prove this conjecture. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 369–373, 2009  相似文献   

13.
We describe an O((log n)2) time parallel algorithm, using n processors, for finding the lexicographically first depth first search tree in the random graph G n, p, with p fixed. The problem itself is complete for P, and so is unlikely to be efficiently parallelizable always.  相似文献   

14.
In section 1 some lower bounds are given for the maximal number of edges ofa (p ? 1)- colorable partial graph. Among others we show that a graph on n vertices with m edges has a (p?1)-colorable partial graph with at least mTn.p/(n2) edges, where Tn.p denotes the so called Turán number. These results are used to obtain upper bounds for special edge covering numbers of graphs. In Section 2 we prove the following theorem: If G is a simple graph and μ is the maximal cardinality of a triangle-free edge set of G, then the edges of G can be covered by μ triangles and edges. In Section 3 related questions are examined.  相似文献   

15.
We show that the variance of the number of edges in the random sphere of influence graph built on n i.i.d. sites which are uniformly distributed over the unit cube in R d, grows linearly with n. This is then used to establish a central limit theorem for the number of edges in the random sphere of influence graph built on a Poisson number of sites. Some related proximity graphs are discussed as well. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 139–152, 1999  相似文献   

16.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. It has recently been shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. In this paper, we extend this result by showing that for any positive integerp, 3≤p any clique decomposisitioof a graph of ordern obtained by removing maximal cliques of order at leastp one by one until none remain, in which case the remaining edges are removed one by one, has at mostt p-1( n ) cliques. Heret p-1( n ) is the number of edges in the Turán graph of ordern, which has no complete subgraphs of orderp. In connection with greedy clique decompositions, P. Winkler conjectured that for any greedy clique decompositionC of a graphG of ordern the sum over the number of vertices in each clique ofC is at mostn 2/2. We prove this conjecture forK 4-free graphs and show that in the case of equality forC andG there are only two possibilities:
  1. G?K n/2,n/2
  2. G is complete 3-partite, where each part hasn/3 vertices.
We show that in either caseC is completely determined.  相似文献   

17.
In this paper we study the maximal size of a distance-2-matching in a random graph G n;M , i.e., the probability space consisting of subgraphs of the complete graph over n vertices, K n , having exactly M edges and uniform probability measure. A distance-2-matching in a graph Y, M 2, is a set of Y-edges with the property that for any two elements every pair of their 4 incident vertices has Y-distance 2. Let M2(Y) be the maximal size of a distance-2-matching in Y. Our main results are the derivation of a lower bound for M2(Y) and a sharp concentration result for the random variable AMS Subject Classification: 05C80, 05C70.  相似文献   

18.
The Ramsey number r(H) of a graph H is the minimum positive integer N such that every two-coloring of the edges of the complete graph KN on N vertices contains a monochromatic copy of H. A graph H is d-degenerate if every subgraph of H has minimum degree at most d. Burr and Erdős in 1975 conjectured that for each positive integer d there is a constant cd such that r(H)≤cdn for every d-degenerate graph H on n vertices. We show that for such graphs , improving on an earlier bound of Kostochka and Sudakov. We also study Ramsey numbers of random graphs, showing that for d fixed, almost surely the random graph G(n,d/n) has Ramsey number linear in n. For random bipartite graphs, our proof gives nearly tight bounds.  相似文献   

19.
We study two problems related to the existence of Hamilton cycles in random graphs. The first question relates to the number of edge disjoint Hamilton cycles that the random graph G n,p contains. δ(G)/2 is an upper bound and we show that if p ≤ (1 + o(1)) ln n/n then this upper bound is tight whp. The second question relates to how many edges can be adversarially removed from G n,p without destroying Hamiltonicity. We show that if pK ln n/n then there exists a constant α > 0 such that whp GH is Hamiltonian for all choices of H as an n-vertex graph with maximum degree Δ(H) ≤ αK ln n. Research supported in part by NSF grant CCR-0200945. Research supported in part by USA-Israel BSF Grant 2002-133 and by grant 526/05 from the Israel Science Foundation.  相似文献   

20.
Let ??(n, m) denote the class of simple graphs on n vertices and m edges and let G ∈ ?? (n, m). There are many results in graph theory giving conditions under which G contains certain types of subgraphs, such as cycles of given lengths, complete graphs, etc. For example, Turan's theorem gives a sufficient condition for G to contain a Kk + 1 in terms of the number of edges in G. In this paper we prove that, for m = αn2, α > (k - 1)/2k, G contains a Kk + 1, each vertex of which has degree at least f(α)n and determine the best possible f(α). For m = ?n2/4? + 1 we establish that G contains cycles whose vertices have certain minimum degrees. Further, for m = αn2, α > 0 we establish that G contains a subgraph H with δ(H) ≥ f(α, n) and determine the best possible value of f(α, n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号