首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
An experimental study was made of the wavy motion of a water film flowing concurrently with a turbulent flow of air. The measurements of the parameters of the film were made by an optical method for the absorption of light in a colored film. The sources of monochromatic radiation were heliumneon lasers. Near the curve of neutral stability, the data of the experiment were compared with the results of a calculation in accordance with the linear theory. A plane-parallel flow of a film loses its stability somewhat earlier than is predicted by the linear theory; the divergence decreases with an increase in the thickness of the film. Far from the curve of neutral stability, the simultaneous existence of two groups of waves was observed.  相似文献   

2.
To analyse the physics underlying gravity-driven runoff of thin wavy films, a film flow model is developed, and is solved with computational fluid dynamics. This model is based on the lubrication theory, and takes into account the gravitational, wall shear and surface tension forces. A key characteristic of the model is that it assumes only one computational cell over the film height, which enables studying film flow on larger computational domains. A main aim of this study is to perform a detailed validation of the numerical model. The film flow model is validated against several experiments of gravity-driven, thin fluid films on smooth surfaces. The time-averaged film thickness and the fluid speed profiles predicted by the model show very good agreement with experimental results. Similarly, the film flow model is able to predict the wave speeds with sufficient accuracy. The energy spectra of the waves, where higher frequency waves are present in film flows at higher Reynolds numbers, show an exponentially decaying trend at these high frequencies. The model performs better than the Nusselt equation for film flows, which under-predicts the time-averaged film thickness and over-predicts the time-averaged fluid speeds, even for flows at low Reynolds numbers. The film flow model is compared qualitatively for fingering behaviour. This model also allows to investigate film flows on large surfaces, which can be rough, curved and of complex geometrical shape.  相似文献   

3.
This work presents two different methods for measuring the thickness of wavy films. The first one is a new non-intrusive technique called “chromatic confocal imaging method” which uses two optical properties—the confocal image and the chromatic aberration of a lens. The accuracy of this technique depends on the optical components, the local gradient of the film thickness and the accuracy of the refractive index used. The second method for simultaneous measurements of film thickness and wave velocity is based on a fluorescence intensity technique. Film thickness and wave velocity measurements of silicone films with different viscosities are presented for Reynolds numbers from 2 to 700 and various inclination angles. The experimental data agree well with the results from published experimental and theoretical studies.  相似文献   

4.
Wavy downflow of viscous liquid films in the presence of a cocurrent turbulent gas flow is analyzed theoretically. The parameters of two-dimensional steady-state traveling waves are calculated for wide ranges of liquid Reynolds number and gas flow velocity. The hydrodynamic characteristics of the liquid flow are computed using the full Navier-Stokes equations. The wavy interface is regarded as a small perturbation, and the equations for the gas are linearized in the vicinity of the main turbulent flow. Various optimal film flow regimes are obtained for the calculated nonlinear waves branching from the plane-parallel flow. It is shown that for high velocities of the cocurrent gas flow, the calculated wave characteristics correspond to those of ripple waves observed in experiments.  相似文献   

5.
The fully developed turbulent flows over wavy boundaries are investigated by means of thek-ε model. Predicted flow characteristics over rigid wavy walls are in good agreement with the vailable experimental data. Moreover drag reduction has been found in a 2-dimensional channel with periodical wavy walls. The energy input from turbulent wind to regular waves is also studied in the paper by the same turbulence model with carefully posed boundary conditions at wind-wave interface. Better agreement has been obtained in the predication of the growth rates of wind waves as compared with the previous theoretical and numerical results. The project supported by the National Natural Science Foundation of China.  相似文献   

6.
Numerical simulation has been made on heat and mass transfer of vapor absorption by wavy lithium bromide aqueous solution films. The velocity fields and interface positions are obtained by VOF model. Solitary waves are generated by periodically disturbed inflow boundary. Based on these, the temperature and concentration fields are obtained with a stationary interface shape. The effect of solitary waves on the heat and mass transfer across the film is investigated. It is shown that due to the mixing of circulation and stretch of large film thickness, the gradient of concentration and absorption rate decrease for solitary wave region. The region of capillary waves shows a significant amount of absorption enhancement. The percentage of absorption for the different regions is quantified.  相似文献   

7.
8.
9.
Wave generation in an incompressible turbulent boundary layer over an elastic coating is investigated. A deviation of the coating surface is represented in the form of a superposition of random-phase harmonics. The response of the flow to wavy surface deflection is determined in the quasilinear approximation. Calculations are carried out on the basis of the local turbulent boundary layer model and a numerical solution of the Prandtl equation. The competition equations for fast waves excited on a low-loss coating are obtained. The results of solving these equations are compared with the known experimental data.  相似文献   

10.
An experimental investigation of wavy water film falling down a flat plate has been carried out using confocal chromatic sensoring technique to determine the instantaneous and statistical characteristics of the film. The experiments involved three parameters: liquid feed mode, Reynolds number and plate inclination angle. The present time–average film thickness data is compared with the previous experimental and theoretical results showing a good agreement. A new correlation for the average film thickness is suggested. Our results show that the liquid feed mode has a vital influence on the film thickness and that the film thickness increases with Reynolds number and decreased plate inclination angle. The root–mean–square value of the film thickness fluctuations depends non-monotonically on the film Reynolds number. The corresponding mechanisms are analyzed.  相似文献   

11.
Evolution of excited waves on a viscous liquid film has been investigated experimentally for the annular gas–liquid flow in a vertical tube. For the first time the dispersion relations are obtained experimentally for linear waves on liquid film surface in the presence of turbulent gas flow. Both cocurrent and countercurrent flow regimes are investigated. As an example of comparison with theory, the experimental data are compared to the results of calculations based on the Benjamin quasi-laminar model for turbulent gas flow. The calculation results are found to be in good agreement with experiments for moderate values of film Reynolds number.  相似文献   

12.
An analytical model for the rate of gas absorption into laminar non-wavy film flow on a horizontal rotating disk is obtained assuming short contact times. Literature data for the oxygen mass transfer coefficient in a wavy film is correlated by means of the dimensionless numbers deriving from the model. The rate enhancement due to waves is found to vary from 6 to 13 times. It is established that the absorption process in the film on the disk as compared to that in a gravitational wavy film flow can be intensified up to 14 times by means of a moderate rotation speed.  相似文献   

13.
Oxide films that form to protect (passivate) metal substrates from corrosive environments can be severely damaged when they are subjected to sufficient levels of electric potential. A continuum mechanics model is presented that captures the intimate electromechanical coupling of the environment and the film responsible for either growth or dissolution of the oxide. Analytical solutions, obtained for a finite-thick film experiencing a uniform electric field, illustrate the existence of a critical combination of electric field strength, initial film thickness and shape, beyond which the passivating oxide can become thin enough to undergo dielectric breakdown, or the substrate can become exposed to the corrosive environment. An experimental procedure is proposed to measure combinations of material properties required by the theoretical model to predict the lifetime of the oxide or to avoid the critical state. Illustrative numerical examples are provided to describe the morphological evolution of oxide films with a periodically wavy surface.  相似文献   

14.
Planar laser-induced fluorescence (PLIF) imaging techniques are increasingly used to study wavy annular flows in vertical and horizontal pipes. We present a ray-tracing study that analyzes the imaging properties of the PLIF technique for uniform and wavy annular films. Part of the emitted fluorescence will hit the water–air interface at angles greater than the critical angle of total reflection. As a consequence, PLIF imaging probes the film twice: From bottom to top and then again from top to bottom. Deflected fluorescence widens PLIF images of uniform films by about 30%. Surface waves further increase the contribution of deflected rays to the overall signal. At the steep slopes of large amplitude axial waves, total reflection might widen PLIF signals by up to a factor of two.  相似文献   

15.
Experimental results are presented on the flooding gas velocity in tubes over a wide range of parameters—tube diameter, tube length, liquid flow rate, liquid viscosity and surface tension. The flooding phenomenon is caused by interaction between the waves on the liquid film and the upward gas stream. By measuring variation of the maximum height of the wavy liquid films with an increase of the gas flow rate, the complicated effects of tube length and surface tension on flooding are revealed. The data of the flooding velocity are empirically correlated in termes of nondimensional groups for each tube length.  相似文献   

16.
Long waves on a viscoelastic film flow down a wavy inclined plane is investigated. The analysis is performed to see how long non-linear waves on viscoelastic film down an uneven inclined wall are deformed due to the non-uniformity of the basic flow. The results are then compared with those corresponding to Newtonian film down a wavy inclined wall as well as viscoelastic film down a plane inclined wall.  相似文献   

17.
Prediction methods for two-phase annular flow require accurate knowledge of the velocity profile within the liquid film flowing at its perimeter as the gradients within this film influence to a large extent the overall transport processes within the entire channel. This film, however, is quite thin and variable and traditional velocimetry methods have met with only very limited success in providing velocity data. The present work describes the application of Particle Image Velocimetry (PIV) to the measurement of velocity fields in the annular liquid flow. Because the liquid is constrained to distances on the order of a millimeter or less, the technique employed here borrows strategies from micro-PIV, but micro-PIV studies do not typically encounter the challenges presented by annular flow, including very large velocity gradients, a free surface that varies in position from moment to moment, the presence of droplet impacts and the passage of waves that can be 10 times the average thickness of the base film. This technique combines the seeding and imaging typical to micro-PIV with a unique lighting and image processing approach to deal with the challenges of a continuously varying liquid film thickness and interface. Mean velocity data are presented for air–water in two-phase co-current upward flow in a rectangular duct, which are the first detailed velocity profiles obtained within the liquid film of upward vertical annular flow to the authors’ knowledge. The velocity data presented here do not distinguish between data from waves and data from the base film. The resulting velocity profiles are compared with the classical Law of the Wall turbulent boundary layer model and found to require a decreased turbulent diffusivity for the model to predict well. These results agree with hypotheses previously presented in the literature.  相似文献   

18.
We study the flow of a liquid down an inclined channel with a sinusoidal bottom profile. We show how wavy bottom variations, which are long compared with the film thickness or the amplitude, modify the flow with respect to that down a flat inclined channel. We consider different perturbation analyses. Their results are compared with experimental data on the velocity profiles and on the film thickness. We discuss the effect of waviness, inclination angle, film thickness, and Reynolds number.  相似文献   

19.
One of the most important tasks in development of modern gas turbine combustors is the reduction of NOx emissions. An effective way to reduce the NOx emission is using the lean premixed prevaporization (LPP) concept. An important phenomenon taking place in LPP chambers is the evaporation of thin fuel films. To increase the fuel evaporation rate, the use of microstructured walls has been suggested. The wall microstructures make use of the capillary forces to evenly distribute the liquid fuel over the wall, so that the appearance of uncontrolled dry patches can be avoided. Moreover, the wall structures promote the thin film evaporation characterized by ultra-high evaporation rates. An experimental setup was built for the investigation of thin liquid films falling down on the outer surface of vertical tubes with either a smooth or structured surface. In the first testing phase water is used, fuel like liquids will be used later on. The thin film can be heated from both sides, by hot oil flowing inside the tube, and by hot compressed air flowing in co-current direction to the thin film. The film is partly evaporated along the flow. Results for the wavy film structure at different Reynolds numbers are reported. For theoretical investigations a model describing the hydrodynamics and heat transfer due to evaporation of the gravity- and shear-driven undisturbed liquid film on structured surfaces was developed. For low Reynolds numbers or low liquid mass fluxes the wall surface is only partly covered with liquid and the heat transfer is shown to be governed by the evaporation of the ultra-thin film in the vicinity of the three-phase contact line. A numerical model for the solution of a two-dimensional free-surface flow of a liquid film over a structured wall was also developed. The Navier–Stokes equations are solved using the Volume of Fluid (VOF) technique. The energy equation is included in the model. The model is verified by comparison with data from the literature showing favorable agreement. In particular, the proposed model predicts the formation of capillary waves observed in the experiments. The model is used to investigate the flow of liquid on a structured wall. This calculation is the first step towards the modeling of a three-dimensional wavy flow of a gravity- and shear-driven film along a wall with longitudinal grooves. It is found that due to the Marangoni effect, a circulating flow arises within the cavity, thereby leading to an enhancement in the evaporation rate.  相似文献   

20.
This paper is devoted to a theoretical analysis of counter-current gas–liquid wavy film flow between vertical plates. We consider two-dimensional nonlinear waves on the interface over a wide variation of parameters. We use the Navier–Stokes equations in their full statement to describe the liquid phase hydrodynamics. For the gas phase equations, we use the Benjamin-Miles approach where the liquid phase is a small disturbance for the turbulent gas flow. We find a region of the superficial velocity where we have two solutions at one set of the problem parameters and where the flooding takes place. We calculate the flooding dependences on the gas/liquid physical properties, on the liquid Reynolds number and on the distance between the plates. These computations allow us to present the correlation for the onset of flooding that based on the fundamental equations and principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号