首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on scaling arguments the governing equations for turbulent flows are classified. The similarity for stratified and rotating flows is characterized and the conditions for a hydrostatic assumption are shown for several flow regimes. For stratified rotating flow a scale analysis of the turbulent stresses exhibits different classes of second order closure. The complete sets of the governing equations for second and third order turbulent closures are presented. The evolution of the equations is embedded into a historical chronology. Received September 15, 1997  相似文献   

2.
The present paper investigates the multigrid (MG) acceleration of compressible Reynolds‐averaged Navier–Stokes computations using Reynolds‐stress model 7‐equation turbulence closures, as well as lower‐level 2‐equation models. The basic single‐grid SG algorithm combines upwind‐biased discretization with a subiterative local‐dual‐time‐stepping time‐integration procedure. MG acceleration, using characteristic MG restriction and prolongation operators, is applied on meanflow variables only (MF–MG), turbulence variables being simply injected onto coarser grids. A previously developed non‐time‐consistent (for steady flows) full‐approximation‐multigrid (s–MG) is assessed for 3‐D anisotropy‐driven and/or separated flows, which are dominated by the convergence of turbulence variables. Even for these difficult test cases CPU‐speed‐ups rCPUSUP∈[3, 5] are obtained. Alternative, potentially time‐consistent approaches (unsteady u–MG), where MG acceleration is applied at each subiteration, are also examined, using different subiterative strategies, MG cycles, and turbulence models. For 2‐D shock wave/turbulent boundary layer interaction, the fastest s–MG approach, with a V(2, 0) sawtooth cycle, systematically yields CPU‐speed‐ups of 5±½, quasi‐independent of the particular turbulence closure used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The gradient transport model for k is extended to classes of turbulent flows for which the gradient transport hypothesis is relevant but the anisotropy of the Reynolds stress, to which the eddy diffusivity is proportional, is large and variable. In highly anisotropic turbulence the standard isotropic model used in engineering practice is fundamentally wrong and the conventional anisotropic approximation inadequate. The work is motivated by the important observations that the eddy diffusivity coefficient for a standard gradient transport model for various transported quantities is a factor of 3–10 times larger in highly anisotropic turbulence than that used in standard engineering models. While the conventional anisotropic eddy diffusivity approximation appears adequate for material conserved scalars it is inadequate for k. The problem is solved by addressing the anisotropy of the turbulent transport of k at the level of the underlying third order tensor. It is shown that, unlike the traditional transport models for k, the orientation of the anisotropy with respect to the direction of the gradient plays a crucial role not accounted for in conventional models used in engineering calculations. The new anisotropic eddy diffusivity tensor is quadratic in the anisotropy (the traditional model is linear in the anisotropy). It is shown that the new more rigorous anisotropic eddy diffusivity varies 300% more than the standard model comparing the isotropic limit to the value for the two-dimensional limit. The two-dimensional limit is important in strongly stably stratified flows, in pressure gradient or shock driven flows and in rotating flows. Using the simple shear and the homogeneous non-equilibrium Rayleigh Taylor turbulence the new anisotropic diffusivity tensor is validated in inhomogeneous Rayleigh Taylor turbulence at early and late times.  相似文献   

4.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
We studied experimentally the effect of turbulent thermal diffusion in a multi-fan turbulence generator which produces a nearly homogeneous and isotropic flow with a small mean velocity. Using particle image velocimetry and image processing techniques, we showed that in a turbulent flow with an imposed mean vertical temperature gradient (stably stratified flow) particles accumulate in the regions with the mean temperature minimum. These experiments detected the effect of turbulent thermal diffusion in a multi-fan turbulence generator for relatively high Reynolds numbers. The experimental results are in compliance with the results of the previous experimental studies of turbulent thermal diffusion in oscillating grid turbulence (Buchholz et al. 2004; Eidelman et al. 2004). We demonstrated that the turbulent thermal diffusion is an universal phenomenon. It occurs independently of the method of turbulence generation, and the qualitative behavior of particle spatial distribution in these very different turbulent flows is similar. Competition between turbulent fluxes caused by turbulent thermal diffusion and turbulent diffusion determines the formation of particle inhomogeneities.  相似文献   

7.
A modified model of turbulence is proposed to describe the processes of vertical transport in inhomogeneous turbulent flows. This model includes algebraic relations for the Reynolds stresses and turbulent-exchange coefficients. Using this model, the growth of the depth of a mixed layer under the action of the wind load in neutral and stable stratified near-wall flows has been predicted. The calculation results for a stable stratified flow that were obtained using the modified and standard two-parametric models of turbulence are compared with experimental data. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 57–64, November–December, 1998.  相似文献   

8.
A new subgrid-scale model called the spectral-dynamic model is proposed. It consists of a refinement of spectral eddy-viscosity models taking into account nondeveloped turbulence in the subgrid-scales. The proposed correction, which is derived from eddy-damped quasi-normal Markovian statistical theory, is based on an adjustment of the turbulent eddy-viscosity coefficient to the deviation of the spectral slope (at small scales) with respect to the standard Kolmogorov law. The spectral-dynamic model is applied to large eddy simulation (LES) of rotating and nonrotating turbulent plane channel flows. It is shown that the proposed refinement allows for clear improvement of the statistical predictions due to a correct prediction of the near-wall behavior. Cases of rotating and nonrotating low (DNS) and high Reynolds (LES) numbers are then compared. It is shown that the principal structural features of the rotating turbulent channel flow are reproduced by the LES, such as the presence of the near-zero mean absolute vorticity region, the modification of the anisotropic character of the flow (with respect to the nonrotating case), the enhancement of flow organization, and the inhibition of the high- and low-speed streaks near the anticyclonic wall. Only a moderate Reynolds number dependence is exhibited, resulting in a more unstable character of the longitudinal large-scale roll cells at high Reynolds number, and a slight increase of the laminarization tendency on the cyclonic side of the channel. Received 16 October 1997 and accepted 1 October 1998  相似文献   

9.
The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. Communicated by S. Obi PACS 47.55.Hd  相似文献   

10.
A generalized treatment for the wall boundary conditions relating to turbulent flows is developed that blends the integration to a solid wall with wall functions. The blending function ensures a smooth transition between the viscous and turbulent regions. An improved low Reynolds number k?ε model is coupled with the proposed compound wall treatment to determine the turbulence field. The eddy viscosity formulation maintains the positivity of normal Reynolds stresses and Schwarz' inequality for turbulent shear stresses. The model coefficients/functions preserve the anisotropic characteristics of turbulence. Computations with fine and coarse meshes of a few flow cases yield appreciably good agreement with the direct numerical simulation and experimental data. The method is recommended for computing the complex flows where computational grids cannot satisfy a priori the prerequisites of viscous/turbulence regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A new approach to sensitize turbulence closures based on the linear eddy-viscosity hypothesis to rotational effects is proposed. The principal idea is to ‘mimic' the behavior of a second moment closure (SMC) in rotating homogeneous shear flow; depending on the ratio of the mean flow to the imposed rotational time scales, the model should be able to bifurcate between two stable equilibrium solutions. These solutions correspond to exponential or algebraic time dependent growth or decay of turbulent kinetic energy. This fundamental behavior of SMCs is believed to be of importance also in the prediction of non-equilibrium turbulence. A near-wall turbulence model which is based on the linear eddy-viscosity hypothesis is modified in the present study. Wall proximity effects are modeled by the elliptic relaxation approach. This closure has been successfully applied in the computation of complex, non-equilibrium flows in inertial frames of reference. The objective of the present study is to extend the predictive capability of the model to include flows dominated by rotational effects. The new model is calibrated in rotating homogeneous turbulent shear flow and subsequently tested in three different cases characterized by profound effects of system rotation or streamline curvature. It is able to capture many of the effects due to imposed body forces that the original closure is incapable of. Good agreement is obtained between the present predictions and available experimental and DNS data.  相似文献   

12.
A thermodynamic model of turbulent motions in a granular material   总被引:1,自引:1,他引:0  
This paper is devoted to a thermodynamic theory of granular materials subjected to slow frictional as well as rapid flows with strong collisional interactions. The microstructure of the material is taken into account by considering the solid volume fraction as a basic field. This variable is of a kinematic nature and enters the formulation via the balance law of the configurational momentum, including corresponding contributions to the energy balance, as originally proposed by Goodman and Cowin [1], but modified here. Complemented by constitutive equations, the emerging field equations are postulated to be adequate for motions, be they laminar or turbulent, if the resolved length scales are sufficiently small. On large length scales the sub-grid motion may be interpreted as fluctuations, which manifest themselves in correspondingly filtered equations as correlation products, like in the turbulence theory. We apply an ergodic (Reynolds) filter to these equations and thus deduce averaged equations for the mean motions. The averaged equations comprise balances of mass, linear and configurational momenta, energy, and turbulent kinetic energy as well as turbulent configurational kinetic energy. They are complemented by balance laws for two internal fields, the dissipation rates of the turbulent kinetic energy and of the turbulent configurational kinetic energy. We formulate closure relations for the averages of the laminar constitutive quantities and for the correlation terms by using the rules of material and turbulent objectivity, including equipresence. Many versions of the second law of thermodynamics are known in the literature. We follow the Müller-Liu theory and extend Müllers entropy principle to allow the satisfaction of the second law of thermodynamics for both laminar and turbulent motions. Its exploitation, performed in the spirit of the Müller-Liu theory, delivers restrictions on the dependent constitutive quantities (through the Liu equations) and a residual inequality, from which thermodynamic equilibrium properties are deduced. Finally, linear relationships are proposed for the nonequilibrium closure relations.Received: 21 March 2003, Accepted: 1 September 2003, Published online: 11 February 2004PACS: 05.70.Ln, 61.25.Hq, 61.30.-vCorrespondence to: I. Luca  相似文献   

13.
In the present study, Reynolds Averaged Navier Stokes (RANS) simulations are applied to a series of turbulent V-shaped flames. Two formulations of Conditional Source-term Estimation (CSE) are developed using singly and doubly conditioned averages for turbulent premixed and partially premixed flames, respectively. Detailed chemistry is included. Conditionally averaged chemical source terms are closed by conditional averaged scalars which are obtained by inverting an integral equation. The objectives are to study a turbulent premixed V-shaped flame using the premixed CSE approach and apply the Doubly Conditional CSE (DCSE) combustion model to a case of stratified combustion. The partially premixed implementation involves double conditioning on two variables, mixture fraction and progress variable. The present study represents the first application of DCSE for a series of turbulent stratified flames. First, CSE is analysed for fully premixed conditions. A sensitivity analysis on the number of CSE ensembles and different scalar dissipation model closures is performed. Good results are obtained in terms of velocity and progress variable profiles. Finally, the partially premixed formulation is applied to the stratified case at three different conditions, corresponding to two different turbulence grids and three different profiles of the equivalence ratio, providing promising results.  相似文献   

14.
In many engineering and industrial applications, the investigation of rotating turbulent flow is of great interest. In rotor-stator cavities, the centrifugal and Coriolis forces have a strong influence on the turbulence by producing a secondary flow in the meridian plane composed of two thin boundary layers along the disks separated by a non-viscous geostrophic core. Most numerical simulations have been performed using RANS and URANS modelling, and very few investigations have been performed using LES. This paper reports on quantitative comparisons of two high-order LES methods to predict a turbulent rotor-stator flow at the rotational Reynolds number Re(=?Ωb 2/ν)?=4 × 105. The classical dynamic Smagorinsky model for the subgrid-scale stress (Germano et al., Phys Fluids A 3(7):1760–1765, 1991) is compared to a spectral vanishing viscosity technique (Séverac & Serre, J Comp Phys 226(2):1234–1255, 2007). Numerical results include both instantaneous data and post-processed statistics. The results show that both LES methods are able to accurately describe the unsteady flow structures and to satisfactorily predict mean velocities as well as Reynolds stress tensor components. A slight advantage is given to the spectral SVV approach in terms of accuracy and CPU cost. The strong improvements obtained in the present results with respect to RANS results confirm that LES is the appropriate level of modelling for flows in which fully turbulent and transition regimes are involved.  相似文献   

15.
M = 2.25 shock‐wave/turbulent‐boundary‐layer interactions over a compression ramp for several angles (8, 13 and 18°) at Reynolds‐number Re=7 × 103 were simulated with three low‐Reynolds second‐moment closures and a linear low‐Reynolds standard k–ε model. A detailed assessment of the turbulence closures by comparison with both mean‐flow and turbulent experimental quantities is presented. The Reynolds‐stress model which is wall‐topology free and which uses an optimized redistribution closure, is in good agreement with experimental data both for wall‐pressure and mean‐velocity profiles. Detailed analysis of three components of the Reynolds‐stress tensor (comparison with measurements and transport‐equation budgets) provides a critical evaluation of full Reynolds‐stress models for the separated supersonic compression ramp. The discrepancy observed in the shock‐wave foot region, between computations and measurements for the Reynolds‐stresses profiles, could be explained by considering the experimental shock‐wave oscillation and directions for future modelling work are indicated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Dissipation rates of the turbulent kinetic energy and of the scalar variance are underestimated when the measurement resolution of the small scales of a turbulent flow field are insufficient. Results are presented of experiments conducted in a salt-stratified water tunnel (Schmidt number ∼700). Dissipation rates are determined to be underestimated, and thus correction techniques based on velocity structure functions and mixed-moment functions are proposed. Dissipation rates in laboratory experiments of shear-free, grid-generated turbulence are determined from balance calculations of the kinetic energy and scalar variance evolution equations. Comparisons between the structure function and balance estimates of dissipation show that the corrections are O(1) for the kinetic energy dissipation rate, and are O(100) for the scalar variance dissipation rate. This difference is due to the lack of resolution down to the Batchelor scales that is required for a high Schmidt number flow. Simple correction functions based on microscale Reynolds numbers are developed for both turbulent kinetic energy and scalar variance dissipation rates. Application of the technique to the results of laboratory experiments of density stratified turbulence, sheared turbulence, and sheared density stratified turbulence yields successful corrections. It is also demonstrated that the Karman–Howarth equality (and the analogous Yaglom equation) that relates second and third-order structure functions to dissipation rates is valid for both unstrained (decaying grid-generated turbulence) and density stratified and sheared turbulence at least up to the magnitudes of strains of the current experiments Nt∼10, St∼10, respectively. This is helpful for it allows the use of these equations in the analysis of turbulence even when the large scale background profiles of velocity and scalar are unknown.  相似文献   

17.
Turbulence Modeling in Noninertial Frames of Reference   总被引:2,自引:0,他引:2  
The effect of an arbitrary change of frame on the structure of turbulence models is examined from a theoretical standpoint. It is proven, as a rigorous consequence of the Navier-Stokes equations, that turbulence models must be form invariant under arbitrary translational accelerations of the reference frame and should only be affected by rotations through the intrinsic mean vorticity. A direct application of this invariance property along with the Taylor-Proudman theorem, material frame-indifference in the limit of two-dimensional turbulence, and Rapid Distortion Theory is shown to yield powerful constraints on the allowable form of turbulence models. Most of the commonly used turbulence models are demonstrated to be in violation of these constraints and consequently are inconsistent with the Navier-Stokes equations in noninertial frames. Alternative models with improved noninertial properties are developed and some simple applications to rotating turbulent flows are considered.This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18107 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665, U.S.A. Partial support was also provided by the Office of Naval Research under Contract No. N00014-85-K-0238.  相似文献   

18.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
防风网透流风空气动力学特性大涡数值模拟研究   总被引:2,自引:2,他引:0  
基于有限体积法建立不可压缩粘性流体运动的大涡模拟模型,采用Smagorinsky-Lilly亚格子模型,并引入浸入边界法(IBM)实现无滑移固壁边界条件,对雷诺数30~30000之间防风网透流风进行模拟研究。基于模拟结果,提出蝶型防风网透流风存在4个典型分区结构,流场中存在由蝶型形态引起的大尺度分层剪切流动,加强流体动能耗散。透流风在雷诺数300时发生层流至湍流的转捩,而在雷诺数增长至3000以上时,湍流充分发展,纵向流速脉动强度可达70%。防风网整体空气阻力远大于单个孔口射流阻力的线性叠加,射流间的相互作用以及大尺度的分层剪切结构大大增加流体阻力损失,这为通过优化孔口布置和网板形态来节省材料提供了科学依据。  相似文献   

20.
非线性湍流模式研究及进展   总被引:6,自引:1,他引:5  
符松 《力学进展》1995,25(3):318-328
现代湍流模式研究已经超出了经典的Boussinesq涡粘性概念和线性的雷诺应力输运范畴,湍流运动过程中的非线性本质已成为模式研究人员所关心的中心问题。其目的在于使湍流模式能更加真实地再现湍流运动的复杂性,提高模式的适用范围,使复杂湍流能够得到合理的模拟,非线性湍流模式在解决复杂湍流运动的计算中已经取得可喜进展,正逐步应用于工程湍流的计算。同时,工程中的湍流问题计算也已走出了简单剪切流动类型及传统的k-ε(及其它形式的)二方程模式框架,二阶矩封闭模式在先进的工程计算中已被用来解决诸如可压缩的空气动力学、发动机气缸及三维复杂几何场内等具有重要应用背景的流动问题,并逐步进入计算流体力学商业软件包。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号