首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
纳米颗粒复合材料增强的葡萄糖生物传感器   总被引:21,自引:1,他引:20  
孟宪伟  唐芳琼  冉均国  苟立 《化学通报》2001,64(6):365-367,364
二氧化硅和金或铂组成的复合纳米颗粒可以大幅度地提高葡萄糖生物传感器的电流响应,其效果明显优于这三种纳米颗粒单独使用时对葡萄糖生物传感器的增强作用。除了具有吸附浓缩效应,吸附定向和量子尺寸颗粒 应外,复合纳米颗粒比单独一种纳米颗粒更易于形成连续势场,降低电子在电极和固定化酶间的迁移阻力,提高电子迁移率,有效地加速了酶的再生过程,因此复合纳米颗粒显著增强了传感器电流响应。  相似文献   

2.
《Analytical letters》2012,45(19-20):1973-1986
Abstract

A very small glucose sensor has been realized, which consists of a gold working electrode with a glucose oxidase immobilized membrane on it, and a gold counter electrode, all made on a sapphire substrate. By using the pH sensitive ISFET as a reference electrode, the potential for a solution, whose pH is constant, can be measured and irreversible metal electrodes, such as gold or platinum, can be used as working electrode and counter electrode. The sensor is very suitable for miniaturizing and mass production, because the Integrated Circuit (IC) fabrication process can be applied. The glucose oxidase immobilized membrane was also deposited by a lift off method, one of the IC processes. A glucose concentration, from 1 to 100 mg/dl, was measured with good linear current output.  相似文献   

3.
《Electroanalysis》2017,29(4):944-949
Herein, a uniform porous highly oriented pyrolytic graphite (HOPG) electrode was prepared via diazonium salt assisted electrochemical etching method and firstly utilized to immobilize enzymes for the construction of a high‐performance glucose biosensor. The formation mechanism and morphology structure of the porous HOPG electrode were investigated using atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS) and X‐ray diffraction (XRD) characterizations. The glucose oxidase (GOx) was functionalized with pyrene groups and then immobilized on the porous HOPG substrate through π‐π stacking interactions and hydrogen bonding. As a result, eight times higher oxidation current density can be obtained for a given glucose concentration for the porous HOPG electrode than the pristine one. Detection limit of 5 μM for glucose was achieved for the as‐fabricated biosensor. It was obtained that 78 % biocatalytical activity of GOx can be retained after the pyrene functionalization and 65.7 % one can even be maintained after four weeks, which confirmed the high efficiency and good stability of the as‐prepared biosensor. What's more, it can be anticipated that various other enzymes can be loaded into this porous HOPG platform using the same enzyme modification methodology for the construction of efficient biosensors.  相似文献   

4.
《Electroanalysis》2005,17(8):668-673
A self‐sampling‐and‐flow biosensor was fabricated by sandwiching a nitrocellulose strip on the working electrode side of the double‐sided microporous gold electrodes and a wicking pad on the counter electrode side. The double‐sided microporous electrodes were formed by plasma sputtering of gold on a porous nylon substrate. Sample was taken up to the enzyme‐immobilized working electrode by the capillary action of the front nitrocellulose strip dipped into the sample solution, analyzed electrochemically at the enzyme‐immobilized electrode, and diffuses out to the backside wicking pad through the micropores of the electrodes, constituting a complete flow cell device with no mechanical liquid‐transporting device. Biosensor was formed by co‐immobilizing the glucose oxidase and electron transfer mediator (ferrocene acetic acid) on the thioctic acid self‐assembled monolayer‐modified working electrode. A typical response time of the biosensor was about 5 min with the sensitivity of 2.98 nA/mM glucose, providing linear response up to 22.5 mM. To demonstrate the use of self‐sampling‐and‐flow biosensor, the consumption rate of glucose in the presence of yeast was monitored for five days.  相似文献   

5.
Glucose biosensor enhanced by nanoparticles   总被引:4,自引:0,他引:4  
Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydro-philic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.  相似文献   

6.
An amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film has been reported in the present investigation. Homogeneous and stable single wall carbon nanotubes (SWNTs) and polypyrrole (PPy) multilayer films were alternately assembled on platinum coated Polyvinylidene fluoride (PVDF) membrane. Since conducting polypyrrole has excellent anti‐interference ability, protection ability in favor of increasing the amount of the SWNTs on platinum coated PVDF membrane and superior transducing ability, a layer by layer approach of polypyrrole and carbon nanotubes has provided an excellent matrix for the immobilization of enzyme. The layer‐by‐layer assembled SWNTs and PPy‐modified platinum coated PVDF membrane is shown to be an excellent amperometric sensor over a wide range of concentrations of glucose. The glucose oxidase (GOx) was immobilized on layer by layer assembled film by a physical adsorption method by cross linking through Glutaraldehyde. The glucose biosensor exhibited a linear response range from 1 mM to 50 mM of glucose concentration with excellent sensitivity of 7.06 μA/mM.  相似文献   

7.
《Electroanalysis》2006,18(11):1131-1134
The direct electrochemistry of glucose oxidase (GOD) was revealed at a carbon nanotube (CNT)‐modified glassy carbon electrode, where the enzyme was immobilized with a chitosan film containing gold nanoparticles. The immobilized GOD displays a pair of redox peaks in pH 7.4 phosphate buffer solutions (PBS) with the formal potential of about ?455 mV (vs. Ag/AgCl) and shows a surface‐controlled electrode process. Bioactivity remains good, along with effective catalysis of the reduction of oxygen. In the presence of dissolved oxygen, the reduction peak current decreased gradually with the addition of glucose, which could be used for reagentless detection of glucose with a linear range from 0.04 to 1.0 mM. The proposed glucose biosensor exhibited high sensitivity, good stability and reproducibility, and was also insensitive to common interferences such as ascorbic and uric acid. The excellent performance of the reagentless biosensor is attributed to the effective enhancement of electron transfer between enzyme and electrode surface by CNTs, and the biocompatible environment that the chitosan film containing gold nanoparticles provides for immobilized GOD.  相似文献   

8.
A potentiometric determination is described for glucose based on oxidation by 1,4-benzoquinone with immobilized glucose oxidase as catalyst in an enzyme reactor. The electrode is preceded by an analytical dialysis unit to remove proteins. The ratio of quinone to hydroquinone was measured with a flow-through gold electrode. Another gold electrode preceded the enzyme reactor to correct for serum components (e.g. ascorbic acid) which can also reduce quinone. The operating range is 0.04–10 × 10-3 M β-D-glucose. The dialysis proceeds with a linear dependence on glucose concentration, and the dialysis ratio can be adjusted by changing the buffer flow rate.  相似文献   

9.
A biosensor for glucose utilizing kinetics of glucose oxidase (EC 1.1.3.4.) was developed. The enzyme was immobilized on polyaniline by covalent bonding, using glutaraldehyde as a bifunctional agent. The system showed a linear response up to 2.2 mM of glucose with a response time of 2.5–4.0 min. In addition, the immobilized enzyme had a higher activity between pH 6.5 and 7.5. The system retained 50% of its activity after 30 d of daily use. The optical absorption spectra of the polyaniline/glucose oxidase electrode after glucose had been added to the buffer solution showed that the absorption band around 800 nm had changed considerably when glucose was allowed to react with the electrode. This optical variation makes polyaniline a very promising polymer for use as a support in optical sensor for clinical application.  相似文献   

10.
The electrochemistry of glucose oxidase (GOx) immobilized on a graphite rod electrode modified by gold nanoparticles (Au-NPs) was studied. Two types of amperometric glucose sensors based on GOx immobilized and Au-NPs modified working electrode (Au-NPs/GOx/graphite and GOx/Au-NPs/graphite) were designed and tested in the presence and the absence of N-methylphenazonium methyl sulphate in different buffers. Results were compared to those obtained with similar electrodes not containing Au-NPs (GOx/graphite). This study shows that the application of Au-NPs increases the rate of mediated electron transfer. Major analytical characteristics of the amperometric biosensor based on GOx and 13 nm diameter Au-NPs were determined. The analytical signal was linearly related to glucose concentration in the range from 0.1 to 10 mmol L?1. The detection limit for glucose was found within 0.1 mmol L?1 and 0.08 mmol L?1 and the relative standard deviation in the range of 0.1–100 mol L?1 was 0.04–0.39%. The τ1/2 of V max characterizes the storage stability of sensors: this parameter for the developed GOx/graphite electrode was 49.3 days and for GOx/Au-NPs/graphite electrode was 19.5 days. The sensor might be suitable for determination of glucose in beverages and/or in food.  相似文献   

11.
吴宝璋  吴辉煌 《化学学报》1998,56(4):364-370
研究了水溶性环糊精预聚合物的存在对苯醌/氢醌体系在铂电极上氧化还原行为的影响, 根据伏安曲线讨论了该预聚合物与苯醌的分子包合作用。环糊精预聚合物与戊二醛缩聚反应而形成的不溶性聚合物膜用于葡萄糖氧化酶的固定化, 以制得新型的第二代葡萄糖电极。由于分子包合作用, 作为电子受体的苯醌在含酶的环糊精聚合物膜中具有较高的浓度, 从而加速了固定化酶的电子传递。测定了酶电极上BQ反应的动力学参数。  相似文献   

12.
A novel potentiometric immunosensor for detection of hepatitis B surface antigen (HBsAg) has been developed by means of self-assembly (SA) and opposite-charged adsorption (OCA) techniques to immobilize hepatitis B surface antibody (HBsAb) on a platinum electrode. A cleaned platinum electrode was first pretreated in the presence of 10% HNO3 and 2.5% K2CrO4 solution and held at -1.5 V (vs SCE) for 1 min to make it negatively charged and then immersed in a mixing solution containing hepatitis B surface antibody, colloidal gold (Au), and polyvinyl butyral (PVB). Finally, HBsAb was successfully immobilized onto the surface of the negatively charged platinum electrode modified nanosized gold and PVB sol-gel matrixes. The modified procedure was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized hepatitis B surface antibody exhibited direct electrochemical behavior toward hepatitis B surface antigen (HBsAg). The performance and factors influencing the performance of the resulting immunosensor were studied in detail. More than 95.7% of the results of the human serum samples obtained by this method were in agreement with those obtained by enzyme-linked immunosorbent assays (ELISAs). The resulting immunosensor exhibited fast potentiometric response (<3 min) to HBsAg. The detection limit of the immunosensor was 2.3 ng.mL(-1), and the linear range was from 8 to 1280 ng.mL(-1). Moreover, the studied immunosensor exhibited high sensitivity, good reproducibility, and long-term stability (>6 months).  相似文献   

13.
A chemically modified electrode with immobilized enzyme was constructed by covalent attachment of l-amino acid oxidase (E.C. 1.4.3.2) to a graphite rod via chemical modification of the electrode surface. Logarithmic response with concentration of selected l-amino acids was observed in the 10-2–10-5 M range. The electrodes displayed slopes of 24–29 mV/decade over the tested concentration range for l-phenylalanine, l-methionine, and l-leucine. The electrode slope degraded by 33% after 78 days under the defined storage conditions. Interaction of hydrogen peroxide with surface groups generated during cyanuric chloride modification appears to be the major contributor to the potentiometric response. Cations change the electrode potential but have essentially no effect on the electrode slope. A plausible model describing the mechanism of response is presented.  相似文献   

14.
The direct electron transfer of glucose oxidase (GOD) was achieved based on the immobilization of GOD/colloidal gold nanoparticles on a glassy carbon electrode by a Nafion film. The immobilized GOD displayed a pair of well-defined and nearly reversible redox peaks with a formal potential (Eo ') of -0.434 V in 0.1 M pH 7.0 phosphate buffer solution and the response showed a surface-controlled electrode process. The dependence of Eo ' on solution pH indicated that the direct electron transfer reaction of GOD was a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOD retained its electrocatalytic activity for the oxidation of glucose. So the resulting modified electrode can be used as a biosensor for detecting glucose.  相似文献   

15.
A new concept is described for monitoring a biomolecule with a sensor having an enzyme entrapped in a conducting polymer. This is based on the sensitivity of the electroactive polymer itself to changes of pH in solution. The concept has been investigated for a glucose sensor with glucose oxidase (GOD) immobilized in a polypyrrole (PPy) layer on an inert platinum electrode. Measurements with a Pt/PPy/GOD electrode for glucose concentrations in the physiological range gave a linear correlation with logarithm of concentration over one decade with a satisfactory dynamic response. There was practically no change of slope or range of linear response to glucose after several days of use; this was in contrast to the amperometric response of the detector when there was about a 50% loss of sensitivity.  相似文献   

16.
《Analytical letters》2012,45(10):2079-2094
Abstract

A potentially implantable glucose biosensor for measuring blood or tissue glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and immobilized glucose oxidase enzyme, in which the immobilized enzyme can be replaced (the sensor recharged) without surgical removal of the sensor from the patient. Recharging of the sensor is achieved by injecting fresh immobilized enzyme into the sensor using a septum. A special technique for immobilization of the enzyme on Ultra-Low Temperature Isotropic (ULTI) carbon powder held in a liquid suspension has been developed.

In vitro studies of the sensors show stable performance during several recharge cycles over a period of 3 months of continuous operation.

Diffusion membranes which ensure linear dependence of the sensor response on glucose concentration have been developed. These membranes comprise silastic latex-rubber coatings over a microporous polycarbonate membrane. Calibration curves of the amperometric signal show linearity over a wide range of glucose concentrations (up to 16 mM), covering hypoglycemic, normoglycemic and hyperglycemic conditions.

The experimental results confirm the suitability of the sensors for in vitro measurements in undiluted human sera.  相似文献   

17.
The fabrication of enzyme electrodes using self-assembled monolayers (SAMs) has attracted considerable interest because of the spatial control over the enzyme immobilization. A model system of glucose oxidase covalently bound to a gold electrode modified with a SAM of 3-mercaptopropionic acid was investigated with regard to the effect of fabrication variables such as the surface topography of the underlying gold electrode, the conditions during covalent attachment of the enzyme and the buffer used. The resultant monolayer enzyme electrodes have excellent sensitivity and dynamic range which can easily be adjusted by controlling the amount of enzyme immobilized. The major drawback of such electrodes is the response which is limited by the kinetics of the enzyme rather than mass transport of substrates. Approaches to bringing such enzyme electrodes into the mass transport limiting regime by exploiting direct electron transfer between the enzyme and the electrode are outlined.  相似文献   

18.
付萍  袁若  柴雅琴  殷冰  曹淑瑞  陈时洪  李宛洋 《化学学报》2008,66(15):1796-1802
在金电极表面修饰一层L-半胱氨酸,再利用静电吸附作用固定纳米普鲁士蓝(nano-PB),然后利用壳聚糖-纳米金复合膜将葡萄糖氧化酶(GOD)固定于修饰电极表面,制成新型的葡萄糖传感器.通过交流阻抗技术,循环伏安法和计时电流法考察了电极的电化学特性.在优化的实验条件下,该传感器在葡萄糖浓度为3.0×10-6~1.0×10-3 mol/L范围内有线性响应,检测下限为1.6×10-6 mol/L.此外该传感器具有响应快、稳定性好和选择性良好的特点,能有效排除常见干扰物质如抗坏血酸、尿酸等对测定的影响.  相似文献   

19.
利用吸附在玻碳基底Nafion膜的负电性磺酸基与正电荷硫堇(Thi)相互作用,将电子媒介体固定电极表面,通过铂纳米线(PtNW)与硫堇间的键合作用及铂纳米线强吸附效应把葡萄糖氧化酶(GOD)固定于玻碳基底上,制得高灵敏电流型葡萄糖生物传感电极. 通过循环伏安法考察了电极的电化学特性,研究了该铂纳米线生物传感电极的葡萄糖电催化性能. 结果表明,该传感电极对葡萄糖有良好的电催化活性,线性响应范围1.0 × 10-5 ~ 6.0 × 10-3 mol·L-1,检测限3.0 × 10-6 mol·L-1. 该传感电极制备简单、灵敏度高、重现性好.  相似文献   

20.
Xia Chu  Daxue Duan  Guoli Shen  Ruqin Yu 《Talanta》2007,71(5):2040-2047
A new amperometric biosensor for glucose was developed based on adsorption of glucose oxidase (GOx) at the gold and platinum nanoparticles-modified carbon nanotube (CNT) electrode. CNTs were covalently immobilized on gold electrode via carbodiimide chemistry by forming amide linkages between carboxylic acid groups on the CNTs and amine residues of cysteamine self-assembled monolayer (SAM). The fabricated GOx/Aunano/Ptnano/CNT electrode was covered with a thin layer of Nafion to avoid the loss of GOx in determination and to improve the anti-interferent ability. The immobilization of CNTs on the gold electrode was characterized by quartz crystal microbalance technique. The morphologies of the CNT/gold and Ptnano/CNT/gold electrodes have been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the gold, CNT/gold, Ptnano/gold and Ptnano/CNT/gold electrodes has also been studied by amperometric method. In addition, effects of electrodeposition time of Pt nanoparticles, pH value, applied potential and electroactive interferents on the amperometric response of the sensor were discussed.

The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for glucose in the absence of a mediator. The linear range was from 0.5 to 17.5 mM with correction coefficient of 0.996. The biosensor had good reproducibility and stability for the determination of glucose.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号