首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用准经典轨线方法研究了在不同碰撞能下,碰撞反应N(4S)+NO(X2Π)→ N2(X3Σg- )+O(3P)在两个最低势能面3A 和 3A'上产物与反应物之间的矢量相关. 结果表明,对于不同的碰撞能,在两个势能面上反应产物的转动取向展示了不同的特征和趋势. 随着碰撞能的增加,发生在3A 势能面上的反应主要受外平面机理支配,而发生在 3A' 势能面上的反应倾向于受内平面机理支配. 这些差异来自于两个势能面的不同构型.  相似文献   

2.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

3.
The rate coefficient of the reaction NH(X (3)Sigma(-))+D((2)S)-->(k(1) )products (1) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures. The NH(X) radicals are produced by quenching of NH(a (1)Delta) (obtained in the photolysis of HN(3)) with Xe and the D atoms are generated in a D(2)/He microwave discharge. The NH(X) concentration profile is measured in the presence of a large excess of D atoms. The room-temperature rate coefficient is determined to be k(1)=(3.9+/-1.5) x 10(13) cm(3) mol(-1) s(-1). The rate coefficient k(1) is the sum of the two rate coefficients, k(1a) and k(1b), which correspond to the reactions NH(X (3)Sigma(-))+D((2)S)-->(k(1a) )ND(X (3)Sigma(-))+H((2)S) (1a) and NH(X (3)Sigma(-))+D((2)S)-->(k(1b) )N((4)S)+HD(X (1)Sigma(g) (+)) (1b), respectively. The first reaction proceeds via the (2)A(") ground state of NH(2) whereas the second one proceeds in the (4)A(") state. A global potential energy surface is constructed for the (2)A(") state using the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadrupte zeta atomic basis. This potential energy surface is used in classical trajectory calculations to determine k(1a). Similar trajectory calculations are performed for reaction (1b) employing a previously calculated potential for the (4)A(") state. The calculated room-temperature rate coefficient is k(1)=4.1 x 10(13) cm(3) mol(-1) s(-1) with k(1a)=4.0 x 10(13) cm(3) mol(-1) s(-1) and k(1b)=9.1 x 10(11) cm(3) mol(-1) s(-1). The theoretically determined k(1) shows a very weak positive temperature dependence in the range 250< or =TK< or =1000. Despite the deep potential well, the exchange reaction on the (2)A(") ground-state potential energy surface is not statistical.  相似文献   

4.
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.  相似文献   

5.
The rate coefficient of the reaction NH(X (3)Sigma(-)) + H((2)S)-->(k(1a) )N((4)S) + H(2)(X (1)Sigma(g) (+)) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures (2 mbar< or =p< or =10 mbar). The NH(X) radicals are produced via the quenching of NH(a(1)Delta) (obtained by photolyzing HN(3)) with Xe whereas the H atoms are generated in a H(2)He microwave discharge. The NH(X) concentration profile is measured under pseudo-first-order condition, i.e., in the presence of a large excess of H atoms. The room temperature rate coefficient is determined to be k(1a) = (1.9 +/- 0.5) x 10(12) cm(3) mol(-1) s(-1). It is found to be independent of the pressure in the range considered in the present experiment. A global potential energy surface for the (4)A(") state is calculated with the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadruple zeta atomic basis. The title reaction is investigated by classical trajectory calculations on this surface. The theoretical room temperature rate coefficient is k(1a) = 0.92 x 10(12)cm(3) mol(-1) s(-1). Using the thermodynamical data for the atoms and molecules involved, the rate coefficient for the reverse reaction, k(-1a), is also calculated. At high temperatures it agrees well with the measured k(-1a).  相似文献   

6.
The intrinsically multireference dissociation of the C-N bond in ground-state diazomethane (CH(2)N(2)) at different angles has been studied with the multireference Brillouin-Wigner coupled-cluster singles and doubles (MRBWCCSD) method. The morphology of the calculated potential energy surface (PES) in C(s)() symmetry is similar to a multireference perturbational (CASPT3) PES. The MRBWCCSD/cc-pVTZ H(2)C-N(2) dissociation energy with respect to the asymptotic CH(2)(?(1)A(1)) + N(2)(X(1)Sigma(g)(+)) products is D(e) = 35.9 kcal/mol, or a zero-point corrected D(0) = 21.4 kcal/mol with respect to the ground-state CH(2)(X(3)B(1)) + N(2)(X(1)Sigma(g)(+)) fragments.  相似文献   

7.
Collisions of the vibrationally excited OH(v = 1) molecule with atomic oxygen are investigated theoretically using a coupled-states, statistical capture (CS-ST) model. Vibrational relaxation can occur by inelastic scattering, and the vibrationally excited molecule can also be removed by reaction to form O(2) in both the ground (X (3)Sigma(g)(-)) and first excited (a (1)Delta(g)) state. In the former case, reaction occurs on the lowest potential energy surface of (2)A(") symmetry, and, in the latter case, by reaction on the lowest potential energy surface of (2)A(') symmetry. We report new ab initio potential energy surfaces for both these states in the product and reactant regions necessary for application of the coupled-states, statistical method. Comparison with exact, reactive scattering calculations within the J-shifting approximation indicate that the CS-ST rate constants for removal of OH(v = 1) can be expected to be reasonably accurate. Our calculated rate constants at 300 K agree well with the experimental results of Khachatrian and Dagdigian [Chem. Phys. Lett. 415, 1 (2005)]. Reaction to yield O(2) (X (3)Sigma(g)(-)) is the dominant removal pathway. At subthermal temperatures, the rate constants for the various vibrational quenching processes all increase down to T approximately = 60 K and then decrease at lower temperature.  相似文献   

8.
Transition probabilities were evaluated for the X (1)Sigma(+)-A (1)Pi system of AlNC and AlCN isomers to analyze photoabsorption and fluorescence spectra. The global potential energy surfaces (PESs) of the X (1)Sigma(+) and A (1)Pi (1 (1)A("),2 (1)A(')) electronic states were determined by the multireference configuration interaction calculations with the Davidson correction. Einstein's B coefficients were computed by quantum vibrational calculations using the three-dimensional PESs of these states and the electronic transition moments for the X-1 (1)A(") and X-2 (1)A(') systems. Einstein's B coefficients obtained for AlNC or AlCN exhibit that the Al-N or Al-C stretching mode is strongly enhanced in the transition. The absorption and fluorescence spectra calculated for the X-1 (1)A(") and X-2 (1)A(') systems are discussed comparing with the observed photoexcitation and fluorescence spectra. The lifetimes for the several vibrational levels of the A (1)Pi state were calculated to be ca. 7 ns for AlNC and 21-24 ns for AlCN from the fluorescence decay rates of the 1 (1)A(")-X and 2 (1)A(')-X emissions.  相似文献   

9.
10.
The spectroscopic constants for the ground (X (1)A(1)) and low-lying triplet and singlet excited states (a (3)A("),A (1)A("),B (1)A(')) of thiocarbonyl chlorofluoride (ClFCS) were obtained using the equation-of-motion coupled-cluster singles and doubles method. The calculated vibrational frequencies of the electronic states were within 4% of the experimental values for 21 of the frequencies, but four calculated frequencies were 20%-40% away from the corresponding experimentally reported values, suggesting the need to reexamine previous experimental spectra. The spectroscopic properties of the radical fragments (FCS, ClCS, and CClF) were also studied, and the correlation diagram between the excited electronic states of ClFCS and possible combinations of dissociation fragments were obtained. The potential energy surfaces (PESs) of the excited electronic states of ClFCS along possible dissociation pathways were also studied. The main qualitative dynamical features of the S(1)(A (1)A("))<--S(2)(B (1)A(')) fluorescence of ClFCS, which may occur in spite of the small barrier (8 kcalmol) on the S(2) PES to the dissociation of C-Cl bond, are discussed.  相似文献   

11.
We report full-dimensional, electronically adiabatic potential energy surfaces (PESs) for the ground state (1A(')) and excited state (2A(')) of OH(3). The PESs are permutationally invariant fits to roughly 23,000 electronic energies (MRCI + Q/aVTZ). Classical trajectory calculations of the postquenching dynamics of OH A (2)Σ(+) are carried out on the 1A(') PES for H(2) and D(2), at previously identified conical intersections (CoIs) [B. C. Hoffman and D. R. Yarkony, J. Chem. Phys. 113, 10091 (2000)]. The initial momenta are sampled fully and partially microcanonically, corresponding to "adiabatic" and "diabatic" models of the dynamics, respectively. Branching ratios of reactive to nonreactive channels from separate C(2v), C(∞v), and C(s) symmetries of CoIs are calculated, as are final rovibrational state distributions of OH and H(2) products. The rovibrational distributions of the OH and D(2) products, the D/H-atom translational energy distribution are calculated and compared to experimental ones. Agreement for these observable quantities is good. The branching between reactive and nonreactive quenching is sensitive to the momenta sampling; very good agreement with experiment is obtained using the diabatic sampling but not with the adiabatic sampling. The vibrational state distributions of H(2)O and HOD (although not measured by experiment) are also presented.  相似文献   

12.
13.
The seams of conical intersection exist between the ground (1 (2)A(')) and the first-excited (2 (2)A(')) electronic potential energy surfaces (PESs) of OH(A (2)Σ(+),X (2)Π) + H(2) system. This intersection induces the nonadiabatic quenching of OH(A (2)Σ(+)) by D(2). We present nonadiabatic quantum dynamics study for OH(A (2)Σ(+)) + D(2) on new five-dimensional coplanar PESs. The ab initio calculations of PESs are based on multireference configuration interaction (MRCI)/aug-cc-pVQZ level. A back-propagation neural network is utilized to fit the PESs and nonadiabatic coupling. High degrees of rotational excitation of quenched OH(X (2)Π) products are found in nonreactive quenching channel, and the quenched D(2) products are vibrationally excited up to quantum number v(2) (')=8. The theoretical results of nonadiabatic time-dependent wave-packet calculation are in good agreement with the existing experimental data.  相似文献   

14.
The electronic and rovibronic structures of the cyclopentadienyl cation (C(5)H(5) (+)) and its fully deuterated isotopomer (C(5)D(5) (+)) have been investigated by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy and ab initio calculations. The vibronic structure in the two lowest electronic states of the cation has been determined using single-photon ionization from the X (2)E(1) (") ground neutral state and 1+1(') resonant two-photon ionization via several vibrational levels of the A (2)A(2) (") excited state. The cyclopentadienyl cation possesses a triplet ground electronic state (X(+) (3)A(2) (')) of D(5h) equilibrium geometry and a first excited singlet state (a(+) (1)E(2) (')) distorted by a pseudo-Jahn-Teller effect. A complete analysis of the Emultiply sign in circlee Jahn-Teller effect and of the (A+E)multiply sign in circlee pseudo-Jahn-Teller effect in the a(+) (1)E(2) (') state has been performed. This state is subject to a very weak linear Jahn-Teller effect and to an unusually strong pseudo-Jahn-Teller effect. Vibronic calculations have enabled us to partially assign the vibronic structure and determine the adiabatic singlet-triplet interval (1534+/-6 cm(-1)). The experimental spectra, a group-theoretical analysis of the vibronic coupling mechanisms, and ab initio calculations were used to establish the topology of the singlet potential energy surfaces and to characterize the pseudorotational motion of the cation on the lowest singlet potential energy surface. The analysis of the rovibronic photoionization dynamics in rotationally resolved spectra and the study of the variation of the intensity distribution with the intermediate vibrational level show that a Herzberg-Teller mechanism is responsible for the observation of the forbidden a(+) (1)E(2) (')<--A (2)A(2) (") photoionizing transition.  相似文献   

15.
Reaction probabilities as a function of total angular momentum (opacity functions) and the resulting reaction cross sections for the collision of open shell S((1)D) atoms with para-hydrogen have been calculated in the kinetic energy range 0.09-10 meV (1-120 K). The quantum mechanical hyperspherical reactive scattering method and quasi-classical trajectory and statistical quasi-classical trajectory approaches were used. Two different ab initio potential energy surfaces (PESs) have been considered. The widely used reproducing kernel Hilbert space (RKHS) PES by Ho et al. [T.-S. Ho, T. Hollebeek, H. Rabitz, S. D. Chao, R. T. Skodje, A. S. Zyubin, and A. M. Mebel, J. Chem. Phys 116, 4124 (2002)] and the recently published accurate double many-body expansion (DMBE)/complete basis set (CBS) PES by Song and Varandas [Y. Z. Song and A. J. C. Varandas, J. Chem. Phys. 130, 134317 (2009)]. The calculations at low collision energies reveal very different dynamical behaviors on the two PESs. The reactivity on the RKHS PES is found to be considerably larger than that on the DMBE/CBS PES as a result of larger reaction probabilities at low total (here also orbital) angular momentum values and to opacity functions which extend to significantly larger total angular momentum values. The observed differences have their origin in two major distinct topographic features. Although both PESs are essentially barrierless for equilibrium H-H distances, when the H-H bond is compressed the DMBE/CBS PES gives rise to a dynamical barrier which limits the reactivity of the system. This barrier is completely absent in the RHKS PES. In addition, the latter PES exhibits a van der Walls well in the entrance channel which reduces the height of the centrifugal barrier and is able to support resonances. As a result, a significant larger cross section is found on this PES, with marked oscillations attributable to shape resonances and/or to the opening of partial wave contributions. The comparison of the results on both PESs is illustrative of the wealth of the dynamics at low collision energy. It is also illuminating about the difficulties encountered in modeling an all-purpose global potential energy surface.  相似文献   

16.
The ground state (S(0)) and lowest-energy triplet state (T(1)) potential energy surfaces (PESs) concerning the thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one (8) to the ketonic tautomer of phenol (11) have been extensively explored using ab initio CASSCF and CASPT2 calculations with several basis sets. State T(1) is predicted to be a triplet pipi lying 66.5 kcal/mol above the energy of the S(0) state. On the S(0) PES, the rearrangement of 8 to 11 is predicted to occur via a two-step mechanism where the internal cyclopropane C-C bond is broken first through a high energy transition structure (TS1-S(0)()), leading to a singlet intermediate (10-S(0)()) lying 25.0 kcal/mol above the ground state of 8. Subsequently, this intermediate undergoes a 1,2-hydrogen shift to yield 11 by surmounting an energy barrier of only 2.7 kcal/mol at 0 K. The rate-determining step of the global rearrangement is the opening of the three-membered ring in 8, which involves an energy barrier of 41.2 kcal/mol at 0 K. This high energy barrier is consistent with the fact that the thermal rearrangement of umbellulone to thymol is carried out by heating at 280 degrees C. Regarding the photochemical rearangement, our results suggest that the most efficient route from the T(1) state of 8 to ground state 11 is the essentially barrierless cleavage of the internal cyclopropane C-C bond followed by radiationless decay to the S(0) state PES via intersystem crossing (ISC) at a crossing point (S(0)()/T(1)()-1) located at almost the same geometry as TS1-S(0)(), leading to the formation of 10-S(0)() and the subsequent low-barrier 1,2-hydrogen shift. The computed small spin-orbit coupling between the T(1) and S(0) PESs at S(0)()/T(1)()-1 (1.2 cm(-)(1)) suggests that the ISC between these PESs is the rate-determining step of the photochemical rearrangement 8 --> 11. Finally, computational evidence indicates that singlet intermediate 10-S(0)() should not be drawn as a zwitterion, but rather as a diradical having a polarized C=O bond.  相似文献   

17.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

18.
Both the singlet(1A') and triplet(3A') potential energy surfaces (PESs) of F+N(3) reactions are investigated using the complete-active-space self-consistent field (CASSCF) and the multireference configuration interaction (MRCI) methods with a proper active space. The minimum energy crossing point (MECP) at the intersection seam between the 1A' and 3A' PESs is located and used to clarify the reaction mechanisms. Two triplet transition states are found, with one in the cis form and the other one in the trans form. Further kinetic calculations are performed with the canonical unified statistical (CUS) theory on the singlet PES and the improved canonical variational transition-state (ICVT) method on the triplet PES. The rate constants are also reported. At 298 K, the calculated rate constant is in reasonably good agreement with experimental values, and spin-orbit coupling effects lower it by 28 %. The spectroscopic constants derived from the fitted potential-energy curves for the singlet and triplet states of NF are in very good agreement with experimental values. Our calculations indicate that the adiabatic reaction on the singlet PES leading to NF(a(1)Delta)+N(2) is the major channel, whereas the nonadiabatic reaction through the MECP, which leads to NF(X(3)Sigma(-))+N(2), is a minor channel.  相似文献   

19.
The authors report extensive high-level ab initio studies of the first excited (A??(2)A(')) state of HO(2). A global potential energy surface (PES) was developed by spline-fitting 17?000 ab initio points at the internal contracted multireference configuration interaction (icMRCI) level with the AVQZ basis set. To ascertain the spectroscopic accuracy of the PES, the near-equilibrium region of the molecule was also investigated using three interpolating moving least-squares-based PESs employing dynamically weighted icMRCI methods in the complete basis set limit. Vibrational energy levels on all four surfaces agree well with each other and a new assignment of some vibrational features is proposed. In addition, the dynamics of both the forward and reverse directions of the H+O(2)(a??(1)Δ(g))?OH+O reaction (J=0) were studied using an exact wave packet method. The reactions are found to be dominated by sharp resonances.  相似文献   

20.
The recombination rate constant for the NH(2)(X(2)B(1)) + NH(2)(X(2)B(1)) → N(2)H(4)(X(1)A(1)) reaction in He, Ne, Ar, and N(2) was measured over the pressure range 1-20 Torr at a temperature of 296 K. The NH(2) radical was produced by 193 nm laser photolysis of NH(3) dilute in the third-body gas. The production of NH(2) and the loss of NH(3) were monitored by high-resolution continuous-wave absorption spectroscopy: NH(2) on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A(2)A(1) ← (0,0,0) X(2)B(1) vibronic band and NH(3) on either inversion doublet of the (q)Q(3)(3) rotational transition of the ν(1) fundamental. Both species were detected simultaneously following the photolysis laser pulse. The broader Doppler width of the NH(2) spectral transition allowed temporal concentration measurements to be extended up to 20 Torr before pressure broadening effects became significant. Fall-off behavior was identified and the bimolecular rate constants for each collision partner were fit to a simple Troe form defined by the parameters, k(0), k(inf), and F(cent). This work is the first part of a two part series in which part 2 will discuss the measurements with more efficient energy transfer collision partners CH(4), C(2)H(6), CO(2), CF(4), and SF(6). The pressure range was too limited to extract any new information on k(inf), and k(inf) was taken from the theoretical calculations of Klippenstein et al. (J. Phys. Chem A 2009, 113, 10241) as k(inf) = 7.9 × 10(-11) cm(3) molecule(-1) s(-1) at 296 K. The individual Troe parameters were: He, k(0) = 2.8 × 10(-29) and F(cent) = 0.47; Ne, k(0) = 2.7 × 10(-29) and F(cent) = 0.34; Ar, k(0) = 4.4 × 10(-29) and F(cent) = 0.41; N(2), k(0) = 5.7 × 10(-29) and F(cent) = 0.61, with units cm(6) molecule(-2) s(-1) for k(0). In the case of N(2) as the third body, it was possible to measure the recombination rate constant for the NH(2) + H reaction near 20 Torr total pressure. The pure three-body recombination rate constant was (2.3 ± 0.55) × 10(-30) cm(6) molecule(-2) s(-1), where the uncertainty is the total experimental uncertainty including systematic errors at the 2σ level of confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号