首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a theoretical study of vibrationally resolved circular dichroism spectra, both in the adiabatic and non-adiabatic frameworks, with a full account of Franck-Condon and Herzberg-Teller vibrational contributions for the former. Model calculations have been performed on 2(R)-deuteriocyclopentanone, whose chirality is due solely to isotopic substitution. This molecule has two distinct, nearly isoenergetic, half-chair conformations in equilibrium, and its demanding nature in terms of computational accuracy makes it a perfect candidate for performing a detailed comparison between different vibronic models. Comparisons are made with experimental spectra, and we also consider temperature effects. In order to reproduce the experimental spectrum, it is necessary to consider the geometry relaxation occurring during the n→π* transition.  相似文献   

2.
The stable conformations of a series of bioactive molecules, (?)-alboatisins A?C, are identified via Monte Carlo searching with the MMFF94 molecular mechanics force field. Then, the optical rotation (OR) values, vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) spectra were calculated using the gradient-corrected density functional theory method. The vibrational and transition modes of molecular chirality were explored in terms of their microscopic origin. The calculated specific rotations are in agreement with the experimental values. From the OR analysis, it was concluded that optical rotation values areregulated by hydroxyl substitution. Vibrations occurring on the chiral skeleton may cause strong absorption in VCD spectra; VCD spectra are thus the spectral response to deformation vibrations on the chiral carbon skeleton. The lowest-energy negative Cotton effect is caused by σ→π* transition. Frontier molecular orbital analysis showed that strong ECD absorptions are produced when the dominant transition on the chiral skeleton is asymmetric; ECD spectra show the result of transitions lacking asymmetry on the chiral skeleton.  相似文献   

3.
Infrared spectra of N2O crystals containing dilute to isotopic impurities are reported. Information on the second moments and other properties of the vibrational exciton bands has been determined from an analysis of the impurity modes, the LOTO splittings, and a comparison of the transition dipole moments of N2O with those of CO2. The effect of the random sense of the molecules on the spectra is discussed.  相似文献   

4.
Chirality transfer from chiral molecules to assemblies is of vital importance to the design of functional chiral materials. In this work, selective co-assembly behaviors between chiral molecules and an achiral luminophore, potentially driven by the intermolecular salt-bridge type hydrogen bonds are reported. Cyano-substituted tetrakis(arylthio)benzene carboxylic acid ( TA ) served as the luminophore and hydrogen bond donors, which underwent co-assembly with different chiral amines. It was found that structures of chiral amines affect the chirality transfer and the properties of co-assemblies due to effects on hydrogen bonds and stacking pattern. Only in specific co-assemblies, the chiroptical properties occurred at both ground state and excited states based on the emerged Cotton effects and circularly polarized luminescence (CPL) signals, revealing that the chirality was successfully transferred from molecular level to supramolecular level. In addition, accurate quantitative examination of chiral amines was realized by circular dichroism (CD) spectra. This work demonstrates the characteristic chirality response and transfer through co-assembly, providing a potential method to develop smart chiroptical materials.  相似文献   

5.
章慧 《大学化学》2017,32(3):1-14
与电子能级跃迁相关的电子圆二色(ECD)光谱因其研究对象宽泛,与涉及振动能级的振动圆二色(VCD)光谱互补,已成为应用于手性立体化学研究的集成手性光谱的主流表征手段。本文概述了确定手性金属配合物绝对构型的三种主要方法,详细介绍了ECD光谱法在确定手性金属配合物绝对构型中的应用,其中着重强调了激子手性方法,并对集成手性光谱学未来的发展趋势做出了展望。  相似文献   

6.
We demonstrate that derivatization of the OH group of endo-borneol, 1, leads to conformational rigidification. Conformational analysis (CA) of 1 and its methyl, acetate, tert-butyl, and trimethylsilyl derivatives, 2-5, is carried out using ab initio density functional theory (DFT). The number of thermally accessible stable conformations is reduced from 3 in 1, to 2 in 2, and to 1 in 3-5. Comparison of IR and vibrational circular dichroism (VCD) spectra of 1 and 3-5, calculated using DFT, to experimental spectra unambiguously confirms the DFT CA. The determination of absolute configurations (ACs) of chiral molecules via analysis of chiroptical spectra using DFT methods increases in complexity and decreases in reliability as the number of populated conformations increases. Our results for endo-borneol support the conclusion that, in the case of chiral alcohols, derivatization can lead to substantial rigidification and, as a result, significantly facilitate the determination of ACs.  相似文献   

7.
Infrared (IR) and vibrational circular dichroism (VCD) spectra were measured for a series of isotopically ((13)C on two or more amide Cdouble bond]O) labeled, 25 residue, alpha-helical peptides of the sequence Ac-(AAAAK)(4)AAAAY-NH(2) that were also studied in the previous paper. Theoretical IR and VCD simulations were performed for correspondingly isotopically labeled Ac-A(24)-NHCH(3) constrained to an alpha-helical conformation by use of property tensor transfer from density functional theory (DFT) calculations on Ac-A(10)-NHCH(3). The simulations predicted and experiments confirmed that the vibrational coupling constants between i, i + 1 and i, i + 2 residues differ in sign, thus leading to a reversal of the (13)C VCD pattern and explaining the large shift in the (13)C amide I frequency as reported in the previous paper. The sign of the coupling constant remained consistent for larger label separation (with the exception of i, i + 4) and for more labels with uniform separation. Such effects confirm that the isotopically labeled group vibrations are essentially only coupled to each other and are effectively uncoupled from those of the unlabeled groups. This development confirms the utility of isotopic labels for site-specific structural studies with vibrational spectra. Observed spectral effects cannot be explained by considering only transition dipole coupling (TDC) between amide oscillators, particularly for smaller label separations, but the TDC and ab initio predicted couplings roughly converge at large separation.  相似文献   

8.
Circular dichroism (CD) spectra and density functional theory (DFT) calculations are reported for a series of conformationally bistable chiroporphyrins with 8-methylene bridles MBCP-8, which can display either an alphaalphaalphaalpha or an alphabetaalphabeta orientation of their meso substituents. From DFT geometry optimizations, the most stable form of ZnBCP-8 is found to be the alphaalphaalphaalpha conformer. By passing to NiBCP-8, there is a strong stabilization of the alphabetaalphabeta conformation with respect to the alphaalphaalphaalpha conformation, consistent with the X-ray structures of alphaalphaalphaalpha-ZnBCP-8 and alphabetaalphabeta-NiBCP-8. A correlation between the sign of the CD signal in the Soret region and the conformation of the BCP-8 compounds is reported: the alphaalphaalphaalpha conformers H2BCP-8 and ZnBCP-8 show a positive CD signal, whereas the alphabetaalphabeta conformers NiBCP-8 and CuBCP-8 exhibit a negative signal. The possible contributions to the rotational strengths of alphabetaalphabeta-NiBCP-8 and alphaalphaalphaalpha-ZnBCP-8, calculated on the basis of their crystal structures, have been analyzed. The CD signals are found to result from a combination of both the inherent chirality of the porphyrin and of extrinsic contributions due to the chiral bridles. These results may have a broad significance for understanding the chiroptical properties of chiral porphyrins and hemoproteins and for monitoring stimuli-responsive, conformationally bistable chiroporphyrin compounds.  相似文献   

9.
Fragment analyses of vibrational circular dichroic response of dipeptides were carried out recently [Choi and Cho, J. Chem. Phys. 120, 4383 (2004)]. In the present paper, by using a minimal size unit peptide containing two chiral carbons covalently bonded to the peptide group, a generalized fragmentation approximation method is discussed and applied to the calculations of infrared-absorption and vibrational circular dichroism (VCD) intensities of amide I vibrations in various secondary structure polypeptides. Unlike the dipole strength determining IR-absorption intensity, the rotational strength is largely determined by the cross terms that are given by the inner product between the transition electric dipole and the transition magnetic dipole of two different peptides. This explains why the signs and magnitudes of VCD peaks are far more sensitive to the relative orientation and distance between different peptide bonds in a given protein. In order to test the validity of fragmentation approximation, three different segments in a globular protein ubiquitin, i.e., right-handed alpha-helix, beta-sheet, and beta-turn regions, were chosen for density-functional theory (DFT) calculations of amide I vibrational properties and the numerically simulated IR-absorption and VCD spectra by using the fragmentation method are directly compared with DFT results. It is believed that the fragmentation approximation method will be of use in numerically simulating vibrational spectra of proteins in solutions.  相似文献   

10.
采用量子化学密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)在B3LYP/6-311++G**水平上对氨氯地平分子的圆二色谱进行理论研究。计算结果表明:振动圆二色谱(VCD)的803、1113、1190、1238、1348、1509、1514、1736、2972、3022和3091 cm-1处存在吸收峰,产生以上吸收峰的振动均涉及到分子手性中心或者所处的基团与分子手性中心形成相关。研究还发现,甲醇溶液使电子圆二色谱(ECD)的吸收峰红移;甲醇溶液中,S-氨氯地平的ECD谱在207、366 nm处存在正性康登效应,223 nm处存在负性康登效应;以上吸收峰均来源于π-π*电子跃迁。这些结论对于深入理解氨氯地平的手征光学性质具有一定的指导意义。  相似文献   

11.
The influence of vibronic interactions on the chiroptical spectra associated with a threesome of nearly degenerate electronic excited states in a dissymmetric molecular system is examined on a formal theoretical model. The model considers two vibrational modes to be effective in promoting pseudo Jahn-Teller (PJT) type interactions between the three closely spaced electronic excited states. Formal expressions are developed for the rotatory strengths of individual vibronic levels derived from the coupled electronic states. Two mode (vibrational)-three state (electronic) vibronic Hamiltonians are constructed (basis set size, 63–108, depending upon interaction parameters used) and diagonalized for a large number of different parameter sets representative of various vibronic coupling strengths, electronic energy level spacings, oscillator (vibrational mode) frequencies, and electronic rotatory strengths. Diagonalization of these vibronic Hamiltonians yields vibronic wave functions and energies which are then used to calculate rotatory strength spectra for the model system. The calculated results demonstrate the profound influence which vibronic interactions of the PJT type may have on the sign patterns and intensity distributions within the rotatory strength spectrum associated with a set of nearly degenerate electronic states. The implication of these results for the interpretation of circular dichroism spectra of chiral transition metal complexes with pseudo tetragonal symmetry are discussed.  相似文献   

12.
The anti-resonance phenomenon in preresonance Raman scattering is investigated on the basis of the direct Taylor expansion of the electric dipole transition moments in vibrational Raman tensors with respect to vibrational normal coordinates. A time-dependent density functional theory treatment is applied to compute the anti-resonance of a nontotally symmetric vibrational model for naphthalene molecules, and the model spectra agree favorably with experiment. This direct evaluation approach may provide a method of predicting anti-resonance and studying its origin.  相似文献   

13.
An experiment on chiral molecules that combines circular dichroism (CD) spectroscopy, mass‐selective detection by laser mass spectrometry (MS), and cooling of molecules by using a supersonic beam is presented. The combination of the former two techniques (CD–laser‐MS) is a new method to investigate chiral molecules and is now used by several research groups. Cooling in a supersonic beam supplies a substantial increase in spectroscopic resolution, a feature that has not yet been used in CD spectroscopy. In the experiments reported herein, a large variation in the electronic CD of carbonyl 3‐methylcyclopentanone was observed depending on the excited vibrational modes in the n→π* transition. This finding should be of interest for the detection of chiral molecules and for the theoretical understanding of the CD of vibronic bands. It is expected that this effect will show up in other chiral carbonyls because the n→π* transition is typical for the carbonyl group.  相似文献   

14.
A microscopic, quantum field theory of lineshapes for electronic circular dichroism spectra is presented. A simple, model Hamiltonian for a single impurity in a crystal is considered. In this formalism, electron-photon coupling terms contribute directly to the magnetic transition dipole moment. Lineshape functions for absorbance and circular dichroism spectra are derived. Electronic circular dichroism spectra contain vibronic contributions which do not appear in absorbance spectra. This treatment does not require perturbation theory to obtain the vibrational contribution to the circular dichroism lineshape.  相似文献   

15.
Herein we report a two-directional cyclization strategy for the synthesis of highly strained depth-expanded oxygen-doped chiral molecular belts of the zigzag-type. From the easily accessible resorcin[4]arenes, an unprecedented cyclization cascade generating fused 2,3-dihydro-1H-phenalenes has been developed to access expanded molecular belts. Stitching up the fjords through intramolecular nucleophilic aromatic substitution and ring-closing olefin metathesis reactions furnished a highly strained O-doped C2-symmetric belt. The enantiomers of the acquired compounds exhibited excellent chiroptical properties. The calculated parallelly aligned electric ( μ ) and magnetic ( m ) transition dipole moments are translated to the high dissymmetry factor (|glum| up to 0.022). This study provides not only an appealing and useful strategy for the synthesis of strained molecular belts but also a new paradigm for the fabrication of belt-derived chiroptical materials with high CPL activities.  相似文献   

16.
The development of density functional theory (DFT) methods for the calculation of vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and transparent spectral region optical rotation (OR) has revolutionized the determination of the absolute configurations (ACs) of chiral molecules using these chiroptical properties. We report the first concerted application of DFT calculations of VCD, ECD, and OR to the determination of the AC of a natural product whose AC was previously undetermined. The natural product is the alkaloid schizozygine, isolated from Schizozygia caffaeoides. Comparison of DFT calculations of the VCD, ECD, and OR of schizozygine to experimental data leads, for each chiroptical technique, to the AC 2R,7S,20S,21S for the naturally occurring (+)-schizozygine. Three other alkaloids, schizogaline, schizogamine, and 6,7-dehydro-19beta-hydroxyschizozygine, have also been isolated from S. caffaeoides and shown to have structures closely related to schizozygine. Assuming a common biosynthetic pathway, their ACs are defined by that of schizozygine.  相似文献   

17.
The chiroptical signs in circularly polarized luminescence (CPL) and circular dichroism (CD) spectra of chiral binaphthyl fluorophores in solution were found to be controllable by changing the dihedral angle of the binaphthyl unit regardless of the same axial chirality.  相似文献   

18.
Harmonic vibrational frequencies and vibronic intensities in the first S(0)-->S(1) (pipi( *)) absorption band of free-base porphin (H(2) P) are investigated by hybrid density functional theory (DFT) with the standard B3LYP functional. The S(0)-S(1) transition probability is calculated using time-dependent DFT with account of Franck-Condon (FC) and Herzberg-Teller (HT) contributions to the electric-dipole transition moments including displacements along all 108 vibrational modes. Two weak wide bands observed in the gas phase absorption spectra of the H(2) P molecule at 626 and 576 nm are interpreted as the 0-0 band of the X(1) A(g)-->1B(3u) transition and the 0-1 band with largest contributions from the nu(10)(a(g))=1610 cm(-1) and nu(19)(b(1g))=1600 cm(-1) modes, respectively, in agreement with previous tentative assignments. Both bands are induced by the HT mechanism, while the FC contributions are negligible. A number of fine structure bands, including combination of two vibrational quanta, are obtained and compared with available spectra from supersonic jet and Shpolskij matrices. Both absorption and fluorescence spectra are interpreted on ground of the linear coupling model and a good fulfillment of the mirror-symmetry rule.  相似文献   

19.
We combine femtosecond polarization resolved VIS-pump IR-probe spectroscopy with DFT and TD-DFT calculations to identify and assign absorption bands to electronic transitions for corroles. These macrocycles and their corresponding metal complexes are receiving great attention because of their utility in many fields, while many of their spectroscopic features have not yet been fully described. Analysis of the perturbed free induction decay provides information about the bleaching signal at time zero and allows for determination of overlapping excited state and bleaching signal amplitudes. The S(0) → S(1) and S(0) → S(2) transitions in the Q-band of the hexacoordinated Al(tpfc)(py)(2) and Br(8)Al(tpfc)(py)(2) absorption spectra are explicitly assigned. Angles between these electronic transition dipole moments (tdms) with a single vibrational transition dipole moment of (53 ± 2)° and (34 ± 2)° when excited at 580 and 620 nm for hexacoordinated Al(tpfc)(py)(2) and (51 ± 2)° and (43 ± 2)° when excited at 590 and 640 nm for hexacoordinated Br(8)Al(tpfc)(py)(2) were determined. The relative angles between the two lowest electronic tdms are (90 ± 8)° and (94 ± 3)° for Al(tpfc)(py)(2) and Br(8)Al(tpfc)(py)(2), respectively. Angles are determined before time zero by polarization resolved perturbed free induction decay and after time zero by polarization resolved transients. Comparison of corrole's wave functions with those of porphine show that the reduced symmetry in the corrole molecules results in lifting of Q-band degeneracy and major reorientation of the electronic transition dipole moments within the molecular scaffold. This information is necessary in designing optimal corrole-based electron and energy transfer complexes.  相似文献   

20.
A general formulation to compute anharmonic vibrational averages and transition properties at the second-order of perturbation theory is derived from the Rayleigh-Schro?dinger development. This approach is intended to be applicable to any property expanded as a Taylor series up to the third order with respect to normal coordinates or their associated momenta. The equations are straightforward to implement and can be easily adapted to various properties, as illustrated for the case of electric and magnetic dipole moments. From those, infrared and vibrational circular dichroism spectra can be readily obtained. This fully automatic procedure has been applied to several chiral molecules of small-to-medium sizes and compared to the standard double harmonic approximation and to experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号