首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
构造矩形网格下求解Lagrangian坐标系下气动方程组的单元中心型格式.空间离散采用控制体积间断Petrov-Galerkin方法,时间离散采用二阶TVD Runge-Kutta方法.利用限制器来抑制非物理震荡并保证RKCV算法的稳定性.构造的算法可以保证物理量的局部守恒.与Runge-Kutta间断Galerkin(RKDG)方法相比较,RKCV方法的计算公式少一项积分项使得计算较简单.给出一些数值算例验证了算法的可靠性及效率.  相似文献   

2.
构造可用于多介质流数值模拟的Runge-Kutta控制体积(RKCV)间断有限元方法.对于多介质流模拟,使用线性和非线性的Riemann问题解法器计算界面处的数值流通量.该方法是一种高精度的数值方法且可以保证流体的局部守恒.数值结果表明,即使是利用线性Riemann问题解法器的计算格式也可获得较好的数值结果.与Runge-kutta间断Galerkin方法的比较展示了本文构造算法的优势.  相似文献   

3.
刘世兴  刘畅  郭永新 《物理学报》2011,60(6):64501-064501
在Birkhoff意义下研究了非线性不可积Hamilton系统——Hénon-Heiles方程的离散变分计算方法,并和辛算法及Runge-Kutta方法相比较,说明在Birkhoff意义下采用离散变分算法研究非线性不可积系统的动力学行为是合理和可行的. 关键词: Hénon-Heiles方程 离散变分方法 自治Birkhoff方程  相似文献   

4.
张荣培  蔚喜军  崔霞  冯涛 《计算物理》2012,29(5):647-653
提出一种求解二维非平衡辐射扩散方程的数值方法.空间离散上采用加权间断Galerkin有限元方法,其中数值流量的构造采用一种新的加权平均;时间离散上采用隐-显积分因子方法,将扩散系数线性化,然后用积分因子方法求解间断Galerkin方法离散后的非线性常微分方程组.数值试验中在非结构网格上求解了多介质的辐射扩散方程.结果表明:对于强非线性和强耦合的非线性扩散方程组,该方法是一种非常有效的数值算法.  相似文献   

5.
引入辛算法对气动声学中的声传播问题进行了数值研究。采用Hamilton系统描述理想气体的声波方程,时间离散采用辛可分Runge-Kutta方法,空间离散采用近似解析方法,构造声波方程的保辛格式。将辛算法和有限差分算法分别在数值频散和计算效率等方面进行了对比分析,研究结果表明:辛算法能够有效地抑制数值频散,在计算效率方面具有明显的优越性。声传播特性模拟结果表明辛算法能够准确地模拟点源声辐射、声波干涉、反射及衍射现象。  相似文献   

6.
陈大伟  蔚喜军 《计算物理》2009,26(4):501-509
给出数值求解一维双曲守恒律方程的新方法——龙格-库塔控制体积间断有限元方法(RKCVDFEM),其中空间离散基于控制体积有限元方法,时间离散基于二阶TVB Runge-Kutta技术,有限元空间选取为分段线性函数空间.理论分析表明,格式具有总变差有界(TVB)的性质,而且空间和时间离散形式上具有二阶精度.数值算例表明,数值解收敛到熵解并且对光滑解的收敛阶是最优的,优于龙格-库塔间断Galerkin方法(RKDGM)的计算结果.  相似文献   

7.
对多车种LWR交通流模型,给出一种半离散中心迎风格式,该格式以五阶WENO-Z重构和半离散中心迎风数值通量为基础.WENO-Z重构方法的引入提高了格式的精度,并保证格式具有基本无振荡的性质.时间的离散采用保持强稳定性的Runge-Kutta方法.通过数值算例验证了格式的有效性.  相似文献   

8.
徐云  蔚喜军 《计算物理》2009,26(2):159-168
研究自适应Runge-Kutta间断Galerkin (RKDG)方法求解双曲守恒律方程组,并提出两种生成相容三角形网格的自适应算法.第一种算法适用于规则网格,实现简单、计算速度快.第二种算法基于非结构网格,设计一类基于间断界面的自适应网格加密策略,方法灵活高效.两种方法都具有令人满意的计算效果,而且降低了RKDG的计算量.  相似文献   

9.
王兵  卢梦 《气体物理》2016,1(6):5-21
在不同参数条件下, 计算分析了H2O和N2等混合物界面上激波诱导Richtmyer-Meshkov(R-M)不稳定性过程.采用有限差分方法数值求解了二维可压缩Navier-Stokes方程, 对流项以5阶特征紧致-WENO混合格式离散, 输运项以6阶对称紧致格式离散, 时间方向以3阶显式Runge-Kutta方法推进.研究表明, 界面振幅和激波强度增大, 均可增强界面附近涡量场, 强化混合.   相似文献   

10.
间断有限元方法求解一维非平衡辐射扩散方程   总被引:2,自引:0,他引:2  
张荣培  蔚喜军  崔霞  冯涛 《计算物理》2012,29(5):641-646
研究一维非平衡辐射扩散方程的数值方法.通过求解间断系数热传导方程的广义黎曼问题,得到一种带加权数值流量,基于该数值流量构造了一类新型的间断有限元方法.在时间离散上采用向后Euler方法,形成的非线性方程组采用Picard迭代求解.数值试验表明该方法具有捕捉大梯度的能力,而且能适应扩散系数间断的情形.  相似文献   

11.
In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite element method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discontinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.  相似文献   

12.
龙格库塔间断有限元方法在计算爆轰问题中的应用   总被引:1,自引:1,他引:0  
张磊  袁礼 《计算物理》2010,27(4):509-517
构造求解带源项守恒律方程组的龙格库塔间断有限元(RKDG)方法,并分别结合源项的Strang分裂法和无分裂法数值求解模型守恒律方程和反应欧拉方程.为了和有限体积型WENO方法进行比较,设计计算源项的WENO重构格式.对一维带源项守恒律的计算表明,对于非刚性问题,RKDG方法比有限体积型WENO方法的误差更小;对于刚性问题,RKDG方法对于间断面位置的捕捉更为精确.对于一二维爆轰波问题的计算结果表明,RKDG方法对爆轰波结构的分辨和爆轰波位置的捕捉能力更强.  相似文献   

13.
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.  相似文献   

14.
赵国忠  蔚喜军  张荣培 《中国物理 B》2013,22(2):20202-020202
In this paper, Runge-Kutta Discontinuous Galerkin (RKDG) finite element method is presented to solve the one-dimensional inviscid compressible gas dynamic equations in Lagrangian coordinate. The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method. A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method. For multi-medium fluid simulation, the two cells adjacent to the interface are treated differently from other cells. At first, a linear Riemann solver is applied to calculate the numerical flux at the interface. Numerical examples show that there is some oscillation in the vicinity of the interface. Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical flux at the interface, which suppress the oscillation successfully. Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.  相似文献   

15.
应用自适应LWDG方法求解三维双曲守恒律方程组,与传统的二阶RKDG方法相比,该方法具有计算量小和精度高的特点.给出一种自适应策略,其中均衡折中策略适用于非相容四面体网格.将二维情形下的后验误差指示子推广到三维双曲守恒律方程组中,数值实验证明了方法的有效性.  相似文献   

16.
描述一种新的求解Euler方程的拉格朗日格式,该格式用Runge-Kutta Discontinuous Galerkin(RKDG)方法在拉格朗日坐标系求解Euler方程,剖分网格随流体运动.新格式不仅保证流体的质量、动量和能量守恒,而且能够在时间和空间上同时达到二阶精度.数值算例表明在一维情况,随着拉氏网格的移动和改变,格式在时间和空间上仍保持二阶精度,并且没有数值震荡.  相似文献   

17.
吴迪  蔚喜军 《计算物理》2010,27(4):492-500
将龙格库塔间断有限元方法(RDDG)与自适应方法相结合,求解三维欧拉方程.区域剖分采用非结构四面体网格,依据数值解的变化采用自适应技术对网格进行局部加密或粗化,减少总体网格数目,提高计算效率.给出四种自适应策略并分析不同自适应策略的优缺点.数值算例表明方法的有效性.  相似文献   

18.
构造Lagrange坐标系下二维可压缩气动方程组的RKDG(Runge-Kutta Discontinuous Galerkin)有限元方法.将流体力学方程组和几何守恒律统-求解,所有计算都在固定的网格上进行,计算过程中不需要网格节点的速度信息.对几个数值算例进行数值模拟,得到较好的数值模拟结果.  相似文献   

19.
Discontinuities usually appear in solutions of nonlinear conservation laws even though the initial condition is smooth, which leads to great difficulty in computing these solutions numerically. The Runge-Kutta discontinuous Galerkin (RKDG) methods are efficient methods for solving nonlinear conservation laws, which are high-order accurate and highly parallelizable, and can be easily used to handle complicated geometries and boundary conditions. An important component of RKDG methods for solving nonlinear conservation laws with strong discontinuities in the solution is a nonlinear limiter, which is applied to detect discontinuities and control spurious oscillations near such discontinuities. Many such limiters have been used in the literature on RKDG methods. A limiter contains two parts, first to identify the "troubled cells", namely, those cells which might need the limiting procedure, then to replace the solution polynomials in those troubled cells by reconstructed polynomials which maintain the original cell averages (conservation). [SIAM J. Sci. Comput., 26 (2005), pp. 995-1013] focused on discussing the first part of limiters. In this paper, focused on the second part, we will systematically investigate and compare a few different reconstruction strategies with an objective of obtaining the most efficient and reliable reconstruction strategy. This work can help with the choosing of right limiters so one can resolve sharper discontinuities, get better numerical solutions and save the computational cost.  相似文献   

20.
二维多介质可压缩流的RKDG有限元方法   总被引:1,自引:0,他引:1  
陈荣三  蔚喜军 《计算物理》2006,23(6):699-705
应用RKDG(Runge-Kutta Discontinuous Galerkin)有限元方法、Level Set方法和Ghost Fluid方法数值模拟二维多介质可压缩流,其中Euler方程组、Level Set方程和重新初始化方程的空间离散采用DG(Discontinuous Galerkin)有限元方法,时间离散采用Runge-Kutta方法.对二维的气-气和气-液两相流进行了数值计算,得到了分辨率较高的计算结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号