首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
声表面波在厚金属栅阵中的耦合模参数   总被引:2,自引:0,他引:2  
徐方迁  金步平 《声学学报》2010,35(4):441-445
提出了一种研究声表面波在压电晶体厚金属栅阵中传播特性的理论方法。将有限元和声表面波在周期栅阵中的变分原理分析方法相结合,在陈东培和H.A.Haus理论基础上、用有限元分析金属短路栅对声表面波传输特性的影响,将力学负载贡献的耦合模参数用有限元矩阵表示,使其适用于声表面波在厚金属或任意形状栅条中传输情况,给出了具体理论分析方法和相应的理论表达式。最后,具体研究了几种压电晶体上金、铝或银栅阵中声表面波的传输特性,通过数值计算给出了声表面波的耦合模参数。   相似文献   

2.
Predoi MV  Rousseau M 《Ultrasonics》2005,43(7):551-559
The Lamb waves are used for the ultrasonic characterization of welds because of their relative long-range propagation. In this paper, a simplified model of a weld-strip between two identical semi-infinite elastic layers is investigated. The reflected and transmitted ultrasonic fields are expressed by modal series whose coefficients are obtained by application of orthogonality relation. Comparisons with solutions obtained by finite elements wave propagation simulations are made. The energy balance between the incident and the scattered waves is also used to verify the accuracy of the obtained modal amplitudes.  相似文献   

3.
Excitations of thermoelastic waves in plates by a pulsed laser   总被引:4,自引:0,他引:4  
The method of the eigenfunction expansion, also known as the expansion in normal modes, is employed to study numerically the axisymmetric excitation of the thermoelastic waves in plates by a pulsed laser. This method gives a systematic treatment and allows one to investigate not only the quasistatic and dynamic thermoelastic responses of pulsed photothermal deformation on the time scale of 1 s, but also the thermoelastic generation of longitudinal, transverse, and surface acoustic waves in thick materials, as well as the excitations of the Rayleigh-Lamb wave modes in thin plates. The formalism is particularly suitable for waveform analyses of the excitations of transient Lamb waves in thin plates because one needs only to calculate the contributions of several lower eigenmodes. The numerical technique provides a quantitative tool for the experimental determination of material properties, especially the mechanical and elastic properties of free-standing films and thicker sheet materials by thermoelastic detection.  相似文献   

4.
5.
Interfaces between neighbouring materials are often subjected to diffusion processes which cause layers having gradually varying mechanical properties--like densities, Young's moduli or shear moduli--perpendicular to the surface or interface. In this investigation particular interest is drawn on the question how the propagation characteristics of bulk acoustic waves are affected by diffusion layers. The reflection and transmission behavior of bulk acoustic waves encountering a continuum having a spatially dependent sound velocity is discussed based on numerical simulations as well as on experimental verifications. The simulated results are part of an on-going project in which material properties of MEMS devices are investigated by short pulse laser acoustic methods. Mechanical waves are excited and detected thermoelastically using laser pulses of 70 fs duration. For metals this leads to wavelengths of 10-20 nm and the corresponding frequencies amount to 0.3-0.6 THz. In contrast to previous work done in this field in which diffusion effects are generally considered as undesirable phenomena, the deliberate realization of microstructures having well defined gradually varying material properties in one or more dimensions represents a goal of this investigation. For metallic thin film multilayers thermally induced diffusion processes have shown to be an easy and reliable technique for the realization of layered structures having continuously varying mechanical properties within several 10 nm. Among the experimental methods suitable for the in-depth profiling of submicron metallic thin films providing resolutions of several nanometers, are short pulse laser acoustic methods, Rutherford backscattering spectroscopy (RBS), and glow discharge optical emission spectroscopy (GDOES). Short pulse laser acoustic methods and RBS have the advantage to be nondestructive. The short pulse laser acoustic method is described in detail and RBS measurements are presented for verification purposes. Finally potential engineering applications like micro-machined spectrum analyzers, acoustic isolation layers, and band pass filters, operating at very high frequencies are presented.  相似文献   

6.
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used.  相似文献   

7.
An acoustically resistive and axially symmetric object is placed in a two-layer ocean very far from a point source of acoustic waves. The object is either floating in the water layer or buried in the sediment layer. Both layers are homogenous. The size of the object is small when compared to the depth of the water channel. The free surface of the sea is assumed to be soft and the bottom is assumed to be hard. Between the two layers the classical diffraction boundary conditions are taken. An extension of the Deep Water Approximation method [Ergatis P. Radiation, propagation and scattering of acoustic waves in an underwater environment. PhD thesis, University of Patras; 1997 (in Greek)] is being provided to cover the case of resistive scatterers [Colton, D., Kress, R. Integral equation methods in scattering theory. New York: Wiley; 1983].  相似文献   

8.
《Comptes Rendus Physique》2016,17(5):543-554
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.  相似文献   

9.
10.
Every AG  Deschamps M 《Ultrasonics》2003,41(7):581-591
This paper deals with the point focus beam (PFB) acoustic materials signature V(z) of an anisotropic solid, and in particular how it tends to be dominated by a limited number of principal surface rays. These rays are associated with propagation directions in which the Rayleigh wave (RW), pseudo-surface acoustic wave (PSAW) or a lateral wave slowness has an extremum. The phenomenon is interpreted in terms of the complex azimuthally averaged reflectance function of the surface, and also explained on the basis of a ray model. We illustrate the phenomenon with a number of examples, pertaining to the surfaces of single crystal copper and a carbon-fibre epoxy composite. In the case of copper, which has a much larger acoustic impedance than the water couplant, the oscillations in V(z) are dominated by principal RW and PSAW, whereas for the composite there is no RW or pseudo-SAW to be discerned with acoustic microscopy (AM), and V(z) is dominated by principal lateral waves. The utility of PFB AM in the study of anisotropic solids is further elaborated with examples showing how V(z) is sensitive to surface orientation, and how V(z) is affected by the presence of a surface over layer. The phenomena examined in this paper expand the scope for determining materials characteristics, such as elastic constants, crystallographic orientation, residual stress and over layer properties, from PFB V(z) measurements.  相似文献   

11.
12.
13.
A new kind of non-contact linear actuator (motor) driven by surface acoustic waves (SAWs) is presented, in which the stators are made from SAW delay lines using 128° YX-LiNbO3 substrates. A fluid layer is introduced between the slider and the stator of the actuator, and the slider is a circular aluminum disk suspended on the surface of the liquid (water) layer. As the SAW is excited on the stator, the SAW is converted to a leaky wave in the interface of the stator and the liquid, and then propagates into the liquid. Owing to the nonlinear effect of wave propagation, acoustic streaming is generated, which pushes the slider to move. By the experiments, the relations between the slider velocity and the experimental parameters, such as the exciting voltage of the SAWs, the thickness and the kinematic viscosity of the liquid layer, are obtained.  相似文献   

14.
A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO2, the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour.  相似文献   

15.
16.
Son MS  Kang YJ 《Ultrasonics》2011,51(4):489-495
This study analytically investigates the propagation of shear waves (SH waves) in a coupled plate consisting of a piezoelectric layer and an elastic layer with initial stress. The piezoelectric material is polarized in z-axis direction and perfectly bonded to an elastic layer. The mechanical displacement and electrical potential function are derived for the piezoelectric coupled plates by solving the electromechanical field equations. The effects of the thickness ratio and the initial stress on the dispersion relations and the phase and group velocities are obtained for electrically open and mechanically free situations. The numerical examples are provided to illustrate graphically the variations of the phase and group velocities versus the wave number for the different layers comparatively. It is seen that the phase velocity of SH waves decreases with the increase of the magnitude of the initial compression stress, while it increases with the increase of the magnitude of the initial tensile stress. The initial stress has a great effect on the propagation of SH waves with the decrease of the thickness ratio. This research is theoretically useful for the design of surface acoustic wave (SAW) devices with high performance.  相似文献   

17.
A method is proposed for describing a moving film vortex structure and its interaction with surface acoustic waves. It is shown that the moving vortex structure can amplify (generate) surface acoustic waves. In contrast to a similar effect in semiconductor films, this effect can appear when the velocity of the vortex structure is much lower than the velocity of the surface acoustic waves. A unidirectional collective mode is shown to exist in the moving vortex structure. This mode gives rise to an acoustic analogue of the diode effect that is resonant in the velocity of the vortex structure. This acoustic effect is manifested as an anomalous attenuation of the surface acoustic waves in the direction of the vortex-structure motion and as the absence of this attenuation for the propagation in the opposite direction.  相似文献   

18.
Shock waves generated by confined XeCl excimer laser ablation of polyimide   总被引:2,自引:0,他引:2  
We investigate shock waves generated by excimer laser ablation of sheet polyimide confined in water. The velocities of the ablation-induced pressure waves in the water are determined by an optical probe system. We measure supersonic velocities up to a few hundred microns away from the irradiated surface, indicating the formation of shock waves. We use these velocities to calculate the corresponding pressures. They are already in the kbar range at fluences comparable to the threshold of ablation. The shock pressure varies as the square root of the incident laser fluence, a behavior that is explained by the rapid heating of the confined gaseous products of ablation.The initially planar shock waves propagate, become spherical, and decay within a few hundred microns in the surrounding water to acoustic waves. During spherical expansion the shock pressure drops as the inverse of the square of the propagation distance.The shock waves generated may be relevant in explaining photoacoustic damage observed in biological tissue after excimer-ablation at corresponding irradiances. They may also be important in material processing applications of excimer laser ablation of polymers as they can lead to plastic deformation.  相似文献   

19.
Wang J  Du J  Li Z  Lin J 《Ultrasonics》2006,44(Z1):e935-e939
The effect of a metal layer over an elastic substrate on surface acoustic wave propagating in the structure can be evaluated precisely for semi-infinite solids and infinite plates, but there is no accurate analytical solution if the finite size of the plate has to be considered. By expanding displacements with eigensolutions of surface acoustic waves in a semi-inifite solid, a set of two-dimensional equations similar to the Mindlin plate theory are obtained. Then for a thin electrode layer, the effect is considered through the approximation of displacements in the metal layer with the ones in the substrate, and an integration over the thickness incorporated the properties of the metal layer into equations through the modification of material properties with the decaying indices of surface acoustic waves and the thickness of the metal layer. Using AT-cut quartz crystal as the substrate, we present the effect of silver electrode layers of finite thickness on the phase velocity of propagating surface acoustic waves.  相似文献   

20.
Acoustic microsocopy methods and particularly microechography have made it possible to determine porosity and mechanical properties of porous silicon. Nevertheless, these techniques are limited when porosity becomes important or when the layer thickness is too thin. This problem can be solved by detecting and analysing guided waves in the layers (Lamb's waves) which are contained in the acoustic signature V(z).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号