首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The emission spectrum of TaCl has been recorded at high resolution in the 3000-35 000 cm−1 region using a Fourier transform spectrometer. The bands were observed by microwave excitation of a mixture of TaCl5 vapor and 3.0 Torr of He. Several TaCl bands have also been recorded using the laser ablation/molecular beam source at the University of New Brunswick. A rotational analysis of a number of bands has been obtained and the majority of the stronger bands have been classified into three groups with different lower state spectroscopic constants. The three lower states have been identified as having Ω″ = 0+, Ω″ = 2, and (tentatively) Ω″ = 3. The Ω″ = 0+ and Ω″ = 2 states are very close in energy and one of these two states is the ground state of TaCl.  相似文献   

2.
Rhodium monochloride has been observed and characterized spectroscopically for the first time. The RhCl molecules were produced in a laser vaporization molecular beam source by the reaction of a laser vaporized rhodium plasma with CCl4 doped in helium, and laser-induced fluorescence and dispersed fluorescence were used to study 15 of the strongest bands spanning the 535-415 nm region. Twelve of these bands were studied at high resolution using a cw ring dye laser. Two low-lying states separated by 140 cm−1 have been observed. The ground state has Ω = 2 and is attributed to a 3Πi state resulting from a δ4π3σ1 electronic configuration. The other low-lying state has Ω = 3 and is attributed to a 3Δi state resulting from a δ3π4σ1 electronic configuration. Excited states with Ω values ranging from 1 to 4 have been observed. Dispersed fluorescence from these excited levels has been used to identify a large number of low-lying electronic states within an energy range of 5200 cm−1 and has also been used to determine a ground state vibrational frequency of ∼348 cm−1. Λ-doublings have been observed in all the transitions studied at high resolution.  相似文献   

3.
The spectrum of B2Σ+-X2Σ+ system of AlO has been recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.05 cm−1. Nineteen bands of the Δv = 1, 0, −1, and −2 sequences of this band system have been analyzed for the rotational structure. Out of which seven bands, viz. 3-2, 4-3, 2-3, 3-4, 4-5, 5-6 and 6-7 have been analyzed for the first time. The rotational lines of these 19 bands along with 20 earlier analyzed bands, a total of 7200 lines, have been fitted in a simultaneous least squares fit. The study has resulted in determining more precise vibrational and rotational constants of the two states. Because of the high resolution employed it became necessary to invoke H0 and H1 coefficients, and a fifth order term to explain the anomalous spin-doubling observed in the v″ = 5, 6 and 7 levels of the X2Σ+ state.  相似文献   

4.
Electronic structure and spectroscopy of the GeSi molecule have been investigated by performing ab initio based multireference configuration interaction calculations. Potential energy curves of 29 Λ-S states of singlet, triplet, and quintet spin multiplicities have been constructed. Spectroscopic constants of 24 bound states within 36 000 cm−1 are reported and compared with the available data. The calculated dissociation energy of GeSi in the ground state is 2.80 eV. Effects of the spin-orbit coupling on the spectroscopic properties of the molecule have been found to be small. However, the computed zero-field-splitting of the ground state compares well with the earlier prediction. Transitions such as 23Σ-X3Σ, 33Σ-X3Σ, 43Π-A3Π, 53Π-A3Π etc. are relatively strong. Radiative lifetimes for several dipole allowed and spin-forbidden transitions are calculated. The estimated lifetimes of the 23Σ, 33Σ, and 53Π states are about 109, 33, and 62 ns, respectively. Dipole moments of most of the low-lying states of GeSi are also reported.  相似文献   

5.
The gas phase infrared emission spectrum of the A3Σ-X3Π electronic transition of SiC has been observed using a high resolution Fourier transform spectrometer. Three bands ν′ − ν″ = 0-1, 0-0, and 1-0 have been observed in the 2770, 3723, and 4578 cm−1 regions, where the 0-1 and 0-0 bands were observed for the first time. The SiC radical was generated by a dc discharge in a flowing mixture of hexamethyl disilane [(CH3)6Si2] and He. A total of 1074 rotational transitions assigned to the 0-1, 0-0, and 1-0 bands have been combined in a simultaneous analysis with previously reported pure rotational data to determine the molecular constants for SiC in the two electronic states. The principal equilibrium molecular constants for the A3Σ state are: Be = 0.6181195(18) cm−1, αe = 0.0051921(20) cm−1, re = 1.8020884(26) Å, and Te = 3773.31(17) cm−1, with one standard deviation given in parentheses. The effect of a perturbation was recognized between the ν = 4 level of X3Π and the ν = 0 level of A3Σ, and the analysis was carried out to determine the interaction parameter between the two states.  相似文献   

6.
The emission spectra of TaN have been investigated in the region 3000-35 000 cm−1 using a Fourier transform spectrometer. The spectra were observed in a tantalum hollow-cathode lamp by discharging a mixture of 1.5 Torr of Ne and about 6 mTorr of N2. In addition to previously known bands, numerous additional bands were observed and assigned to a number of new transitions. The spectroscopic properties of the low-lying electronic states of TaN were also predicted by ab initio calculations. A 1Σ+ state, with equilibrium constants of Be=0.457 852 1(48) cm−1, αe=0.002 235 9(67) cm−1, and Re=1.683 099 9(88) Å, has been identified as the ground state of TaN based on our experimental observations supported by the ab initio results. The first excited state has been identified as the a3Δ1 spin component at 2827 cm−1 above the ground state. To higher energies, the states become difficult to assign because of their Hund's case (c) behavior and extensive interactions between the spin components of the electronic terms.  相似文献   

7.
Emission bands attributed to the NbS radical have been observed in the near infrared and visible regions with FTS techniques using an electrodeless 2450 MHz discharge as a source. Transitions within the doublet and quartet manifolds were recorded at high resolution. The present paper gives the first rotational analysis of this molecule. Numerous bands within the doublet and quartet manifolds have been analyzed, resulting in the characterization of seven different electronic states, three in the doublet and four in the quartet manifold. The states have been labeled in analogy with NbO. The analyzed electronic states are: X4Σ, C4Σ, A4Φ, D4Δ, a2Δ, c2Π, and e2Φ. Four additional substates in the doublet manifold have also been analyzed. In all, 27 vibrational sublevels have been included in the analysis, the total number of rotational lines being about 18 000. The positions of the analyzed transitions are: C4Σ → X4Σ near 15 670 cm−1, D4Δ → A4Φ near 7740 cm−1, c2Π → a2Δ near 5850 cm−1 and e2Φ → a2Δ near 8500 cm−1. The overall picture is consistent with the corresponding analysis of NbO. However, three energy separations could not be derived from the experimental data in the case of NbS, i.e., the a2ΔX4Σ, A4ΦX4Σ and a2Δ5/2-a2Δ3/2 splittings. These were set to 4992, 5490, and 992 cm−1, respectively, from preliminary ab initio calculations. In this way, a tentative energy level scheme could be drawn. The first order spin-orbit parameter of the A4Φ state was indeterminable from the experimental data and was set to the value 170 cm−1, derived from the same calculations.  相似文献   

8.
The laser-induced fluorescence excitation spectra of jet-cooled CuS molecules have been recorded in the energy range of 17 200-19 500 cm−1. Fourteen observed vibronic bands have been assigned as three transition progressions: A2Σ (v′ = 0-4)-X2Π3/2 (v″ = 0), A2Σ (v′ = 0-4)-X2Π3/2 (v″ = 1), and A2Σ (v′ = 0-3)-X2Π1/2 (v″ = 0). Spectroscopic constants of both the X2Π ground state and the A2Σ excited state of 63CuS and 65CuS were determined by analyzing their rotationally resolved spectra. Furthermore, the lifetimes of most observed bands were measured for the first time.  相似文献   

9.
The emission spectrum of the B2Σ+-X2Σ+ system of CN has been observed at high-resolution using a Fourier transform spectrometer. The rotational structure of a large number of bands involving vibrational levels v = 0-15 of both electronic states has been analyzed, and improved spectroscopic constants have been determined by combining the microwave and infrared measurements from previous studies. Improved spectroscopic constants for vibrational levels up to v″ = 18 in the X2Σ+ state and v′ = 19 in the B2Σ+ state have been determined by combining the measurements of the 16-13, 18-17, 18-18, 19-15, and 19-18 bands of Douglas and Routly [Astrophys. J. Suppl. 1 (1955) 295-318] and 17-14 and 17-16 bands of Ito et al. [J. Chem. Phys. 96 (1992) 4195] with our data. The band constants obtained have been used to estimate equilibrium ground state constants for CN.  相似文献   

10.
The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) method has been used to calculate the potential surfaces for the six lowest-lying electronic states of the TeOH molecule. The 2A″ ground state is predicted to have a bent equilibrium geometry. The first excited state, 2A′, is calculated to lie 2695 cm−1 above the ground state. The MORBID program package has been used for the rotation-vibration analysis of the electronic ground state, for which the term values of the fundamental levels are calculated as 582 cm−1 for the Te-O stretching mode, 959 cm−1 for the bending mode, and 3655 cm−1 for the O-H stretching mode.  相似文献   

11.
Using the high resolution Fourier transform spectrometer the B2Σ+-X2Σ+ band system of AlO molecule has been recorded. The rotational structure of eighteen bands belonging to B2Σ+-X2Σ+ transition of AlO have been analyzed which led to accurate rotational and vibrational constants of ground and excited states. A few bands, viz. (2, 1), (3, 2), (4, 3), (2, 3), (3, 4), (4, 5), and (5, 6) were analyzed for the first time. Using these constants, the Franck-Condon factors and r-centroids were computed for the bands of B-X, C-X and C-A band systems for the v′ = 0-8; v″ = 0-8 matrix using the method developed by Jarmain and Nicholls. The F-C factors and r-centroids obey the established relationships.  相似文献   

12.
The gas phase spectrum of the silicon boride radical has been observed for the first time. Two electronic transitions were observed in emission from a corona excited supersonic expansion source. The D4Σ-X4Σ system consists of emission from v′ = 0 to v″ = 0-3, while the A4Π-X4Σ system consists of numerous bands with v′ = 0-5 and v″ = 0-11, although only the strong 0-0 and 0-1 bands have been analyzed so far.  相似文献   

13.
The electronic spectrum of hafnium monofluoride has been investigated from 415 to 725 nm using a laser-ablation/molecular beam laser-induced fluorescence spectrometer. Several electronic systems were observed and data have been recorded at both low and high resolution. High resolution rotational analyses of the [17.4]1.5-X1.5 (0-0), [17.9]2.5-X1.5 (0-0), [19.7]0.5-X1.5 (0-0), [20.0]0.5-X1.5 (0-0), [21.1]2.5-X1.5 (0-0), [22.3]1.5-X1.5 (0-0), and [23.3]0.5-X1.5 (0-0) subbands have been carried out, resulting in accurate values for the ground and excited state effective rotational constants. Furthermore, the rotational analysis of the subbands assigned as [17.4]1.5-X1.5 (1-0) and [17.9]2.5-X1.5 (1-0) allows us to determine values of 589.7569(6) and 588.9076(6) cm−1 for ΔG1/2 [17.4] and ΔG1/2 [17.9], respectively. From dispersed fluorescence data we find that ΔG′′1/2=670(13) cm−1 for the ground state and that another low-lying electronic state lies at ∼2850 cm−1. The data also suggests that a second low-lying electronic state lies at ∼5200 cm−1 above the ground state.  相似文献   

14.
Natural germanium and selenium consist of, respectively, five and six stable isotopes. Several of these isotopes have considerable abundances and one should expect to observe the bands of at least six isotopic variants of germanium monoselenide (GeSe). In this paper, for the first time, the results of the high-resolution electronic spectrum of the main transition A1Π-X1Σ+ of the specific isotopomer 74Ge80Se, excited in a microwave discharge and recorded in the 33 500-26 000 cm−1 region using a Fourier transform spectrometer, is discussed. From the rotational analysis of 25 bands involving v″ = 0-12 and v′ = 0-7, accurate vibrational and rotational constants of the A1Π state are determined. The present study has revealed perturbations in the v′ = 6 and 7 levels of the A1Π state.  相似文献   

15.
The emission spectrum of NbCl has been recorded in the 3000-20 000 cm−1 region using a Fourier transform spectrometer. The bands were observed by microwave excitation of a mixture of NbCl5 vapor and He. Two groups of bands observed in the 6500-7000 cm−1 and 9800-11 000 cm−1 regions have been assigned to two electronic transitions. Five bands observed in the 6500-7000 cm−1 region consist of R, P, and Q branches with no combination defect or Λ-doubling. They have been assigned as five sub-bands of a ΔΛ=±1 transition with Λ>1. Nine bands observed in the 9800-11 000 cm−1 regions consist of R and P branches, and they are also free from Λ-doubling. These bands have been classified into four sub-bands of a ΔΛ=0 transition (with Λ>1), which has tentatively been assigned as . The two transitions have no electronic states in common. Ab initio calculations have been performed on NbCl and the spectroscopic properties of the low-lying electronic states have been calculated. The ground state of NbCl has been predicted to be a state arising from the 3σ1 1δ2 2π1 configuration, with a low-lying state at 1300 cm−1 from the 3σ1 1δ1 2π2 configuration. The results of our experimental and theoretical studies will be presented. This work represents the first experimental investigation of the spectra of NbCl and the first ab initio prediction of the spectroscopic properties of the low-lying electronic states.  相似文献   

16.
The region of the infrared-active band of the ν9 CH2 bending mode [1.1.1]propellane has been recorded at a resolution (0.0025 cm−1) sufficient to distinguish individual rovibrational lines. This region includes the partially overlapping bands ν9 (e′) = 1459 cm−1, 2ν18 (l = 2, E′) = 1430 cm−1, ν6 + ν12 (E′) = 1489 cm−1, and ν4 + ν15 (A2″) = 1518 cm−1. In addition, the difference band ν4 − ν15 (A2″) was observed in the far infrared near 295 cm−1 and analyzed to give good constants for the upper ν4 levels. The close proximities of the four bands in the ν9 region suggest that Coriolis and Fermi resonance couplings could be significant and theoretical band parameters obtained from Gaussian ab initio calculations were helpful in guiding the band analyses. The analyses of all four bands were accomplished, based on our earlier report of ground state constants determined from combination differences involving more than 4000 pairs of transitions from five fundamental and four combination bands. This paper presents the analyses and the determination of the upper state constants of all four bands in the region of the ν9 band. Complications were most evident in the 2ν18 (l = 2, E′) band, which showed significant perturbations due to mixing with the nearby 2ν18 (l = 0, A1′) and ν4 + ν12 (E′) levels which are either infrared inactive as transitions from the ground state, or, in the latter case, too weak to observe. These complications are discussed and a comparison of all molecular constants with those available from the ab initio calculations at the anharmonic level is presented.  相似文献   

17.
The (0,0) and (1,0) bands of the E3Π-X3Δ transition of TiO in the near-infrared have been recorded by frequency modulated laser absorption spectroscopy in a laser ablation/free jet expansion source. The observed linewidths (FWHM) varied from 300 to 500 MHz according to the expansion conditions and are dominated by residual Doppler broadening in the unskimmed source. Data for the (0,0) band have been obtained for TiO molecules containing all the naturally occurring Ti isotopes but, for the weaker (1,0) band, only for 48TiO. Rotational constants for the two upper state vibrational levels were derived by fitting the data to an effective Hamiltonian; equilibrium parameters have been calculated. The experimental results are compared to the results of ab initio calculations on the E-X system. Ab initio results for the b-a system and for the lowest 3Σ state are also presented. They indicate that the D3Σ state is not a very low-lying state.  相似文献   

18.
The emission spectra of the A2П-X2Σ+ (red) system of 12C14N have been reinvestigated in the 3500-22 000 cm−1 region at high resolution using a Fourier transform spectrometer. In total, spectra of 63 bands involving vibrational levels up to v′ = 22 of the A2П state and v″ = 12 of the X2Σ+ ground state have been measured and rotationally analyzed providing an improved set of spectroscopic constants. The present measurements of the Δv = −2 sequence bands of 12C14N and those of 13C14N from Ram et al. (2010) [36] allow for a much improved identification of these two isotopologues in the near infrared spectra of carbon stars.  相似文献   

19.
Infrared spectra of bicyclo[1.1.1]pentane (C5H8) have been recorded at a resolution (0.0015 cm−1) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed analysis of three of the ten infrared-allowed bands, ν14(e′) at 540 cm−1, ν17 (a2″) at 1220 cm−1, ν18(a2″) at 832 cm−1, and a partial analysis of the ν11(e′) band at 1237 cm−1. The upper states of transitions involving the lowest frequency mode, ν14(e′), show no evidence of rovibrational perturbations but those for the ν17 and ν18 (a2″) modes give clear indication of Coriolis coupling to nearby e′ levels. Accordingly, ground state constants were determined by use of the combination-difference method for all three bands. The assigned frequencies provided over 3300 consistent ground state difference values, yielding the following constants for the ground state (in units of cm−1): B0 = 0.2399412(2), DJ = 6.024(6) × 10−8, DJK = −1.930(21) × 10−8. For the unperturbed ν14(e′) fundamental, more than 3500 transitions were analyzed and the band origin was found to be at 540.34225(2) cm−1. The numbers in parentheses are the uncertainties (two standard deviations) in the values of the constants. The results are compared with those obtained previously for [1.1.1]propellane and with those computed at the ab initio anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.  相似文献   

20.
The rotational spectra of the ground vibrational state and the ν9 = 1 torsional state have been reinvestigated and accurate spectroscopic constants have been determined. The torsional frequency, ν9 = 70(15) cm−1, has been determined by relative intensity measurements. The assignment of the infrared spectrum has been slightly revised and an accurate harmonic force field has been calculated. The equilibrium structure has been determined using different, complementary methods: experimental, semi-experimental and ab initio, leading to r(NN) = 1.870(2) Å, in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号