首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectrum of holmium monofluoride (HoF) in the blue (420-480 nm) region has been studied using laser-induced fluorescence. Previous work [J. Phys. B 7 (1974) L234] had assigned several bands in this region to the B8-X8 transition. By obtaining wavelength selected laser excitation spectra at high resolution and rotationally analyzing seven bands in this region, we have shown that not all the bands previously assigned to the B8-X8 system belong to the same electronic transition and have identified three separate transitions which we have labelled B8-X8, B′8-X8, and C7-X27. Preliminary low resolution dispersed fluorescence spectra have shown several excited states at energies greater than 4000 cm−1 above the ground state and, though not all could be assigned, ligand field theory calculations are consistent with assigning them to the first excited spin-orbit component of the Ho+(4f106s2)F ground state configuration or to the first excited configuration, Ho+(4f116s)F. The results of the dispersed fluorescence experiments also tentatively place the X27 state at ∼70 cm−1 above the ground X7 state.  相似文献   

2.
Laser-induced fluorescence spectra have been obtained at low resolution using a laser ablation source and pulsed dye laser, and at high resolution using a Broida oven and cw ring dye laser. Dispersed fluorescence spectra from two different excited states, A[16.4]8.5 and B[15.4]Ω (unknown Ω) (the states are labelled [10−3T0]Ω according to their energy and Ω assignment) showed transitions to the same four low lying electronic states, X7.5, Y[0.15]8.5, Z[0.85]7.5, and an unassigned state at 970 cm−1. High resolution excitation spectra of the A-X 0-0, A-Y 0-0 and 0-1, and A-Z 0-0 and 0-1 transitions were obtained and a global fit to all the data yielded rotational constants for both 162Dy35Cl and 164Dy35Cl. From the band origins, vibrational frequencies of 291 and 284 cm−1 were obtained for the Y[0.15]8.5 and Z[0.85]7.5 states, respectively, suggesting that these two states originate from the Dy+(4f106s)Cl configuration. The 162Dy-164Dy and 35Cl-37Cl isotope effects were studied and both indicated a ground state, X7.5, vibrational frequency of ∼230 cm−1 which was reinforced by the observation, in dispersed fluorescence from the B[15.4] state, of a weak transition to a state 233 cm−1 above the ground state. The observed electronic states and their configurational origin are discussed in terms of ligand field theory predictions.  相似文献   

3.
4.
The gas phase infrared emission spectrum of the A3Σ-X3Π electronic transition of SiC has been observed using a high resolution Fourier transform spectrometer. Three bands ν′ − ν″ = 0-1, 0-0, and 1-0 have been observed in the 2770, 3723, and 4578 cm−1 regions, where the 0-1 and 0-0 bands were observed for the first time. The SiC radical was generated by a dc discharge in a flowing mixture of hexamethyl disilane [(CH3)6Si2] and He. A total of 1074 rotational transitions assigned to the 0-1, 0-0, and 1-0 bands have been combined in a simultaneous analysis with previously reported pure rotational data to determine the molecular constants for SiC in the two electronic states. The principal equilibrium molecular constants for the A3Σ state are: Be = 0.6181195(18) cm−1, αe = 0.0051921(20) cm−1, re = 1.8020884(26) Å, and Te = 3773.31(17) cm−1, with one standard deviation given in parentheses. The effect of a perturbation was recognized between the ν = 4 level of X3Π and the ν = 0 level of A3Σ, and the analysis was carried out to determine the interaction parameter between the two states.  相似文献   

5.
Spectroscopic observations are reported for rhodium monoxide from hollow-cathode emission and laser-induced fluorescence experiments. Eleven bands of Rh16O and 10 of Rh18O, from the [15.8]2Π-X4Σ (b) and [16.0]2Π-X4Σ (b) transitions, have been rotationally analyzed. The ground state constants have been determined as B0 = 0.4132, λ0 = −0.58 and γ0 = −0.102, in cm−1. Rotational and lambda doubling parameters in v = 0, 1, 2, and 3 excited state vibrational levels have also been determined.  相似文献   

6.
New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3.5 μm region using a Fourier transform spectrometer. The bands were excited in a carbon tube furnace by the reaction of cobalt metal vapor and a mixture of H2 or D2 with He at a temperature of about 2600 °C. Eight bands were observed for the A3Φ4-X3Φ4 electronic transition of CoD, and five bands for the corresponding transition of CoH. The (0, 0) bands of the A3Φ3-X3Φ3 system were also recorded for both isotopologues, although one of the parity components in the X3Φ3 sub-state of CoH was found to be perturbed. The A3Φ3-X3Φ4 transition was also observed in our spectrum of CoH. In addition, a new [13.3]4 electronic state was found by observing [13.3]4-X3Φ3 and [13.3]4-X3Φ4 transitions in the spectrum of CoD. Analysis of the transitions with ΔΩ = 0, ± 1 provided more accurate values of spin-orbit splittings between Ω = 4 and Ω = 3 components. The ground-state data for both molecules were fitted both to band-constant and Dunham-expansion expressions, and a combined-isotopologue analysis of the X3Φ4 spin component was carried out using the data for CoH and CoD. The upper states were represented by term values in these analyses because of perturbations, but estimated band constants for them were obtained in separate fits in which ground-state constants were held fixed.  相似文献   

7.
Laser induced fluorescence spectra of HoS have been obtained using a Broida oven and a ring dye laser. Dispersed fluorescence spectra showed transitions from a common upper state, A[14.79]8.5 to the v = 0 and 1 vibrational levels of three low lying states, labelled X8.5, W[0.25]7.5 and V[0.98]7.5 (the states are labelled [10−3T0]Ω according to their energy and Ω assignment). High resolution excitation spectra were obtained for all six transitions and a rotational analysis yielded the following principal constants, in cm−1, for the X, W and V states, respectively: T0 = 0, 251.8713(31), 980.6969(37); Be = 0.121903(42), 0.121729(37), 0.122561(34); ΔG1/2 = 463.8811(46), 462.9411(45), 461.2084(127). For the A state, T0 = 14794.6987(28) cm−1 and B0 = 0.112596(29) cm−1. The three low lying states are shown to arise from the Ho2+[4f10(5I8)6s]S2− configuration in accord with Ligand Field Theory predictions. The atomic origin of each of the three low lying electronic states was determined from the observed resolved hyperfine structure.  相似文献   

8.
Several new transitions of holmium monochloride (HoCl) have been studied at high resolution using laser excitation spectroscopy. Two main transitions, B[17.7]8-X8 and C[19.3]9-X8 have been observed and five bands, 0-0, 0-1, 1-0, 1-1, and 2-1 of the B-X transition and three bands, 0-0, 0-1, and 0-3 of the C-X transition have been obtained at high resolution and rotationally analyzed. Among several low lying states observed in dispersed fluorescence was a strong transition from the C state to a state ∼2140 cm−1 above the ground state. Excitation spectra of this transition have shown that there are apparently two states, ∼6 cm−1 apart. Comparison with ligand field theory calculations are consistent with assigning these states to the excited low lying Ho+(4f116s)Cl configuration. Several other low lying electronic states have been observed in dispersed fluorescence spectra. Although their assignments could not be established, their energies suggest that they are from the Ho+(4f106s2)Cl or Ho+(4f116s)Cl configurations. Rotational constants have been obtained for the B[17.7]8 and C[19.3]9 states and have been used to speculate on the possible electron configurations for these states.  相似文献   

9.
Emission spectra of RuN have been recorded at high resolution in the region 12 000-35 000 cm−1 using a Fourier transform spectrometer. The molecules were excited in a ruthenium hollow cathode lamp in the presence of about 2.5 Torr of Ne and 5 m Torr of N2. New bands with origins near 17 758.1, 18 866.4, 19 800.4 and 20 721.5 cm−1 have been assigned as the 0-1, 0-0, 1-0, and 2-0 bands of a new 2Σ+-2Σ+ system with the lower state as the ground state. This transition has been labeled as F2Σ+-X2Σ+, with the F2Σ+ state arising from the 1σ22441 configuration. A rotational analysis of these bands has been carried out and spectroscopic constants have been extracted. The principal equilibrium constants for the ground state of RuN are ΔG(1/2)″=1108.3235(22) cm−1, Be″=0.5545023(42) cm−1, αe″=0.0034468(57) cm−1, re″=1.5714269(60) Å, while the equilibrium constants for the excited state are ωe′=946.8471(40) cm−1, ωexe′=6.4229(14) cm−1, Be′=0.50085(21) cm−1, αe′=0.00375(10) cm−1, re′=1.65345(34) Å. This transition is analogous to the E2Σ+-X2Σ+ system of RhC (W. J. Balfour et al., J. Mol. Spectrosc.198, 393 (1999)).  相似文献   

10.
Emission spectra of the b1Σ+(b0+) → X3Σ(X10+,X21) and a1Δ(a2) → X21 transitions of AsBr have been measured in the near-infrared spectral region with a Fourier-transform spectrometer. The arsenic bromide radicals were generated in fast-flow systems by reaction of arsenic vapor (Asx) with bromine and were excited by microwave-discharged oxygen. The most prominent features in the spectrum are the Δv = +1,0,−1, and −2 band sequences of the b1Σ+(b0+) → X3Σ(X10+) transition in the range 11 700-12 700 cm−1. With lower intensities, the Δv = 0 and −1 sequences of the b1Σ+(b0+) → X3Σ(X21) sub-system show up in the same range. Further to the red, between 6000 and 6700 cm−1, the Δv = 0, +1, and −1 sequences of the hitherto unknown a1Δ(a2) → X21 transition are observed. Analyses of medium- and high-resolution spectra have yielded improved molecular constants for the X10+, X21, and b0+ states and first values of the electronic energy and the vibrational constants of the a2 state.  相似文献   

11.
This paper reports the 6400-7400 cm−1 Fourier-transform (FT) near-infrared (NIR) emission spectrum of the BiS X22Π3/2 → X12Π1/2 fine structure bands as well as the millimeterwave rotational spectrum of the X12Π1/2 state. For the FTNIR observations, BiS was produced by reaction of bismuth with sulfur vapor and excited by energy transfer from metastable oxygen, O2(a1Δg), in a fast-flow system. As was the case for BiO [O. Shestakov, R. Breidohr, H. Demes, K.D. Setzer, E.H. Fink, J. Mol. Spectrosc. 190 (1998) 28-77], the 0.5 cm−1resolution spectrum revealed a number of strong bands in the Δv = 0 and ±1 sequences which showed perturbed band spacings, band shapes, and intensities due to avoided crossing of the X22Π3/2 and A14Π3/2 potential curves for v ? 4 of X22Π3/2. The millimeterwave rotational spectrum of BiS in its X12Π1/2 state was observed when BiS was produced in a high-temperature oven by a discharge in a mixture of Bi vapor and CS2. The signal to noise ratio was markedly improved by using a White-type multipath cell. Ninety seven features from J′ = 23.5 to J′ = 41.5 were measured between 150 and 300 GHz. Analysis of the 0.5 cm−1 resolution FT spectrum yielded the fine structure splitting and vibrational constants of the states. A simultaneous analysis of millimeterwave and a 0.005 cm−1 FT spectrum of the 0-0 band of the NIR system was carried out to give precise rotational, fine, and hyperfine constants for the X12Π1/2 and X22Π3/2 states. The results are consistent with those reported earlier for BiO and indicate only a slight decrease in the unpaired electron density in the 6p(π) orbital on the Bi atom.  相似文献   

12.
Infrared spectra of bicyclo[1.1.1]pentane (C5H8) have been recorded at a resolution (0.0015 cm−1) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed analysis of three of the ten infrared-allowed bands, ν14(e′) at 540 cm−1, ν17 (a2″) at 1220 cm−1, ν18(a2″) at 832 cm−1, and a partial analysis of the ν11(e′) band at 1237 cm−1. The upper states of transitions involving the lowest frequency mode, ν14(e′), show no evidence of rovibrational perturbations but those for the ν17 and ν18 (a2″) modes give clear indication of Coriolis coupling to nearby e′ levels. Accordingly, ground state constants were determined by use of the combination-difference method for all three bands. The assigned frequencies provided over 3300 consistent ground state difference values, yielding the following constants for the ground state (in units of cm−1): B0 = 0.2399412(2), DJ = 6.024(6) × 10−8, DJK = −1.930(21) × 10−8. For the unperturbed ν14(e′) fundamental, more than 3500 transitions were analyzed and the band origin was found to be at 540.34225(2) cm−1. The numbers in parentheses are the uncertainties (two standard deviations) in the values of the constants. The results are compared with those obtained previously for [1.1.1]propellane and with those computed at the ab initio anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.  相似文献   

13.
Vibrational bands belonging to the [15.0] 2Δ5/2-A2Δ5/2, [15.0] 2Δ5/2-X2Π3/2, and [15.0] 2Π3/2-X2Π3/2 electronic transitions of NiCl have been observed in the 14 000-16 000 cm−1 region. The [15.0] 2Δ5/2 and [15.0] 2Π3/2 states are identified for the first time. The observed bands have been recorded at high spectral resolution using several techniques, which include intracavity laser spectroscopy (ILS), Fourier transform emission spectroscopy (FTS), and laser induced fluorescence (LIF) spectroscopy. For the ILS absorption spectra, NiCl molecules were produced in a nickel hollow cathode operated with a small amount of CCl4. For the FTS emission spectra, excited NiCl molecules were produced in a King-type carbon tube furnace loaded with NiCl2 and heated to 1600 °C. In the LIF work, NiCl molecules were produced by reacting laser-ablated nickel with PCl3 seeded in argon. Detailed analysis of rotational transition lines indicates that the observed [15.0] 2Δ5/2 and [15.0] 2Π3/2 states are only separated by 10 cm−1 and are interacting with each other. Molecular constants for these newly observed electronic states are reported.  相似文献   

14.
We have recorded laser excitation spectra of the CaOCH3 free radical in a laser ablation molecular beam apparatus, at a spectral resolution of about 0.010 cm−1 and a rotational temperature estimated at 15 K. The two spin-orbit components of the A2E-X2A1 000 origin band between 625 and 630 nm have been analyzed. Five main subbands were revealed, with ΔK=+1 and K″=0,±1,±2. There was clear evidence of lambda-doubling in the A2E1/2-X2A1 000 (F1) K′=+1←K″=0 component. A nonlinear least-squares fitting program based on the model developed by Endo et al. [Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys.81, 122-135 (1984)] fit the experimental data (514 A-X lines, N″≤37) with a root mean square deviation of 0.003 cm−1, using known molecular constants of the ground state. The main vibronic (T0=15 925.1232(5) cm−1), spin-orbit (aζed=66.974 48(51) cm−1), Coriolis (Aζt=5.437 30(24)) cm−1, rotational (A=5.439 97(24) cm−1, B=0.117 884(2) cm−1), and fine structure constants (ε1=−8.208(14)×10−3 cm−1, h1=1.50(12)×10−4 cm−1, εaa=3.58(89)×10−3 cm−1, εbc=3.20(76)×10−3 cm−1) for the excited state have been obtained.  相似文献   

15.
The emission spectra of the A2П-X2Σ+ (red) system of 12C14N have been reinvestigated in the 3500-22 000 cm−1 region at high resolution using a Fourier transform spectrometer. In total, spectra of 63 bands involving vibrational levels up to v′ = 22 of the A2П state and v″ = 12 of the X2Σ+ ground state have been measured and rotationally analyzed providing an improved set of spectroscopic constants. The present measurements of the Δv = −2 sequence bands of 12C14N and those of 13C14N from Ram et al. (2010) [36] allow for a much improved identification of these two isotopologues in the near infrared spectra of carbon stars.  相似文献   

16.
Two vibrational bands of an electronic transition of PtF occurring at 11 940 cm−1 and 12 496 cm−1 were recorded and analyzed. These transitions are identified as the (0,0) and (1,0) bands of an [11.9] Ω = 3/2 − XΩ = 3/2 electronic transition. Gas phase PtF was produced in a copper hollow cathode lined with platinum foil using a trace amount of SF6, and the spectrum was recorded at Doppler resolution by intracavity laser absorption spectroscopy. This work represents the first published spectroscopic data on PtF. Molecular constants for the ground and excited electronic states are presented.  相似文献   

17.
The electronic emission spectrum of the A3Π0-X1Σ+ and B3Π1-X1Σ+ transitions of Gallium monochloride molecule (69GaCl) has been recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.035 cm−1. The rotational structure of the 0-0, 1-0, 2-1, and 3-2, bands belonging to A-X and 0-0, 0-1, 1-2, and 0-2 bands belonging to B-X transitions has been analyzed and equilibrium rotational constants for the X1Σ+ and A3Π0 states have been obtained. For the first time we are able to determine the Λ-doubling constants in the v = 0 and 1 levels of the B3Π1 state.  相似文献   

18.
142NdO molecules have been produced by heating 142Nd2O3 to about 2100 K in a vacuum furnace in the presence of argon gas. A ring dye laser operating with DCM dye has been used to excite 142NdO transitions in the 636-666 nm spectral region, and induced fluorescence has been spectroscopically analysed at high resolution with a Fourier transform spectrometer. Contributions from thermal emission have been simultaneously observed. Two new low-lying electronic states have been detected, at energies of about 2708 and 4139 cm−1, designated as [2.7], most probably observed at ν = 1, and [4.1], likely to be (2)6 (observed at ν = 0). The ν = 1 level of the (1)6 state, already known at ν = 0, has been observed for the first time. Most levels pumped by the laser, between 14 000 and 17 400 cm−1, could be identified from earlier work. In addition, by studying in more detail recently obtained fluorescence spectra [J. Mol. Spectrosc. 225 (2004) 132] spectroscopic constants have been improved for a number of states. Finally, from thermal emission spectra, rotational analyses of the 0-0 bands of two new systems, [16.4] − (2)5 and [14.1] − X4, and reanalyses at higher resolution of the 0-0 bands of the systems V, VII, VIII, and X have been carried out. A consistent set of spectroscopic constants of the levels of 142NdO characterized as yet is presented.  相似文献   

19.
A high resolution cavity ringdown spectrometer (CRDS) has been constructed using a 1.5 μm continuous-wave external-cavity tunable diode laser, a mode-matched near-confocal ringdown cavity, and 2 cm pulsed slit jet. Without signal averaging, the RMS noise in the absorption signal is 1.7 × 10−9 cm−1. The rotationally resolved overtone spectrum of the OH(ν1) + CH(ν3) stretch combination band of methanol between 6510 and 6550 cm−1 has been observed for J=0-8 and K=0-3 at sub-Doppler resolution. In total, 418 lines are assigned and global fits yield molecular torsion-rotation parameters for the upper state. Four K-localized perturbations are analyzed and the pattern of residuals is discussed.  相似文献   

20.
In a discharged supersonic jet of Cl2, transitions of the D′ 2g(3P2)-A3Π(2u) system for 35Cl2 were observed directly by laser induced fluorescence spectroscopy. By a discharge in Cl2, the Cl2 molecules were populated into the A′ state, which is a metastable and optically forbidden state, from the state. An ultraviolet laser radiation excites the molecules to the D′ ion-pair state. A set of Dunham parameters for the A′ state is determined from a global least-squares fitting for 59 vibronic bands with v″ = 0-7. In the fitting, the previously reported data, T(v) and B(v) for the v = 14 and 15 bands of the A′ state [T. Ishiwata, A. Ishiguro, K. Obi, J. Mol. Spectrosc. 147 (1991) 300-320], were included. Y00 = 57295.723(5) cm−1 of the D′ state [J.-H. Si, T. Ishiwata, K. Obi, J. Mol. Spectrosc. 147 (1991) 334-345] was also included in the global fitting in order to determine the absolute position of the A′ state. The determined parameters of the A′ state are Y00 = 17171.506(14), Y10 = 255.915(85), Y20 = −4.465(70), Y30 = −8.7(23) × 10−2, Y40 = 6.3(35) × 10−3, Y50 = −4.9(26) × 10−4, Y60 = 1.43(69) × 10−5, Y01 = 0.16282(15), Y11 = −2.363(68) × 10−3, Y21 = −5.01(93) × 10−5, and Y31 = −3.01(36) × 10−6 (in cm−1 and one standard deviations of the fit in parentheses). The absolute position of the A′ state is determined with good accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号