首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of local simulation of stagnation point heat transfer to a blunt body is solved within the framework of boundary layer theory on the assumption that the simulation subsonic high-enthalpy flow is in equilibrium outside the boundary layer on the model, while the parameters of the natural flow are in equilibrium at the outer edge of the boundary layer on the body. The parameters of the simulating subsonic flow are expressed in terms of the total enthalpyH 0, the stagnation point pressurep w and the velocityV 1 for the natural free-stream flow in the form of universal functions of the dimensionless modeling coefficients=R m * /R b * ( .<1),=V 1/2H 0 ( .<1) whereR m * and R b * are the effective radii of the model and the body at their stagnation points. Approximate conditions for modeling the heat transfer from a high-enthalpy (including hypersonic) flow to the stagnation point on a blunt body by means of hyposonic (M1) flows, corresponding to the case 21, are obtained. The possibilities of complete local simulation of hypersonic nonequilibrium heat transfer to the stagnation point on a blunt body in the hyposonic dissociated air jets of a VGU-2 100-kilowatt induction plasma generator [4, 5] are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 172–180, January–February, 1993.  相似文献   

2.
On the boundary conditions at the macroscopic level   总被引:2,自引:0,他引:2  
We study the problem of the boundary conditions specified at the boundary of a porous domain in order to solve the macroscopic transfer equations obtained by means of the volume-averaging method. The analysis is limited to the case of conductive transport but the method can be extended to other cases. A numerical study enables us to illustrate the theoretical results in the case of a model porous medium. Roman Letters sf interfacial area of the s-f interface contained within the macroscopic system m2 - A sf interfacial area of the s-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - d s , d f microscopic characteristic length m - g vector that maps to s, m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l REV characteristic length, m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for the f-phase at the f-s interface - n e outwardly directed unit normal vector at the dividing surface - T * macroscopic temperature field obtained by solving the macroscopic equation (3), K - V averaging volume, m3 - V s , V f volume of the considered phase within the averaging volume, m3 - volume of the macroscopic system, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 Greek Letters s , f volume fraction - ratio of thermal conductivities - s , f thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding to T * , K - spatial deviation temperature K - error on the temperature due to the macroscopic boundary conditions, K - spatial average - s , f intrinsic phase average  相似文献   

3.
S. Kase 《Rheologica Acta》1982,21(2):210-211
The general integral of the very simple equation 21/n/() was found to describe the cross sectional area of filaments of isothermal power law fluids while in transient stretching where is time and is the initial location of fluid molecules at time = 0 given as the distance from a reference point fixed in space. Any such stretching transient given as a solution of the above equation is physically realizable subject to the restrictions > 0 and/ < 0.  相似文献   

4.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

5.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

6.
A theory proposed by the author as representative of the flow of a general suspension contains three interaction forces, f, S and N. For a quasi-concentrated suspension and for a dilute suspension, N and S, N are omitted, respectively. For the latter special case, we treat diffusion of a fluid through an elastic solid. For a quasi-concentrated suspension, we show that F and S depend on the gradient of the motion gradient. We demonstrate the existence of interesting phenomena: non-simple behavior, dissipative effects, generalized lift and drag forces.Presented at the second conference Recent Developments in Structured Continua, May 23 – 25, 1990, in Sherbrooke, Québec, Canada.  相似文献   

7.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

8.
Heat and mass transfer at a vertical surface is examined in the case of combined free and forced convection. The boundary layer equations, transformed to ordinary differential equations, contain a parameter that determines the effect of free convection on the forced motion. Criteria are offered for differentiating the free-convection, forced-convection, and combined regimes.Notation x, y coordinates - u, v velocity components - g acceleration of gravity - T temperature - kinematic viscosity - coefficient of thermal expansion - a thermal diffusivity - 1 partial vapor density - D diffusion coefficient - W2 mass velocity of air - independent variable - w shear stress at wall - thermal conductivity - r latent heat of phase transition - , dimensionless temperature and partial vapor density - m* the complex (m 1m 1w )/(1–m(1w ) - cp specific heat at constant pressure - G Grashof number - R Reynolds number - P Prandtl number - S Schmidt number  相似文献   

9.
This paper studies Lp-estimates for solutions of the nonlinear, spatially homogeneous Boltzmann equation. The molecular forces considered include inverse kth-power forces with k > 5 and angular cut-off.The main conclusions are the following. Let f be the unique solution of the Boltzmann equation with f(v,t)(1 + ¦v2¦)(s 1 + /p)/2 L1, when the initial value f 0 satisfies f 0(v) 0, f 0(v) (1 + ¦v¦2)(s 1 + /p)/2 L1, for some s1 2 + /p, and f 0(v) (1 + ¦v¦2)s/2 Lp. If s 2/p and 1 < p < , then f(v, t)(1 + ¦v¦2)(s s 1)/2 Lp, t > 0. If s >2 and 3/(1+ ) < p < , thenf(v,t) (1 + ¦v¦2)(s(s 1 + 3/p))/2 Lp, t > 0. If s >2 + 2C0/C1 and 3/(l + ) < p < , then f(v,t)(1 + ¦v¦2)s/2 Lp, t > 0. Here 1/p + 1/p = 1, x y = min (x, y), and C0, C1, 0 < 1, are positive constants related to the molecular forces under consideration; = (k – 5)/ (k – 1) for kth-power forces.Some weaker conclusions follow when 1 < p 3/ (1 + ).In the proofs some previously known L-estimates are extended. The results for Lp, 1 < p < , are based on these L-estimates coupled with nonlinear interpolation.  相似文献   

10.
Numerical methods are used to investigate the transient, forced convection heat/mass transfer from a finite flat plate to a steady stream of viscous, incompressible fluid. The temperature/concentration inside the plate is considered uniform. The heat/mass balance equations were solved in elliptic cylindrical coordinates by a finite difference implicit ADI method. These solutions span the parameter ranges 10 Re 400 and 0.1 Pr 10. The computations were focused on the influence of the product (aspect ratio) × (volume heat capacity ratio/Henry number) on the heat/mass transfer rate. The occurrence on the plates surface of heat/mass wake phenomena was also studied.  相似文献   

11.
A mixed convection parameter=(Ra) 1/4/(Re)1/2, with=Pr/(1+Pr) and=Pr/(1 +Pr)1/2, is proposed to replace the conventional Richardson number, Gr/Re2, for combined forced and free convection flow on an isothermal vertical plate. This parameter can readily be reduced to the controlling parameters for the relative importance of the forced and the free convection,Ra 1/4/(Re 1/2 Pr 1/3) forPr 1, and (RaPr)1/2/(RePr 1/2 forPr 1. Furthermore, new coordinates and dependent variables are properly defined in terms of, so that the transformed nonsimilar boundary-layer equations give numerical solutions that are uniformly valid over the entire range of mixed convection intensity from forced convection limit to free convection limit for fluids of any Prandtl number from 0.001 to 10,000. The effects of mixed convection intensity and the Prandtl number on the velocity profiles, the temperature profiles, the wall friction, and the heat transfer rate are illustrated for both cases of buoyancy assisting and opposing flow conditions.
Mischkonvektion an einer vertikalen Platte für Fluide beliebiger Prandtl-Zahl
Zusammenfassung Für die kombinierte Zwangs- und freie Konvektion an einer isothermen senkrechten Platte wird ein Mischkonvektions-Parameter=( Ra) 1/4 (Re)1/2, mit=Pr/(1 +Pr) und=Pr/(1 +Pr)1/2 vorgeschlagen, den die gebräuchliche Richardson-Zahl, Gr/Re2, ersetzen soll. Dieser Parameter kann ohne weiteres auf die maßgebenden Kennzahlen für den relativen Einfluß der erzwungenen und der freien Konvektion reduziert werden,Ra 1/4/(Re 1/2 Pr 1/3) fürPr 1 und (RaPr)1/4/(RePr)1/2 fürPr 1. Weiterhin werden neue Koordinaten und abhängige Variablen als Funktion von definiert, so daß für die transformierten Grenzschichtgleichungen numerische Lösungen erstellt werden können, die über den gesamten Bereich der Mischkonvektion, von der freien Konvektion bis zur Zwangskonvektion, für Fluide jeglicher Prandtl-Zahl von 0.001 bis 10.000 gleichmäßig gültig sind. Der Einfluß der Intensität der Mischkonvektion und der Prandtl-Zahl auf die Geschwindigkeitsprofile, die Temperaturprofile, die Wandreibung und den Wärmeübergangskoeffizienten werden für die beiden Fälle der Strömung in und entgegengesetzt zur Schwerkraftrichtung dargestellt.

Nomenclature C f local friction coefficient - C p specific heat capacity - f reduced stream function - g gravitational acceleration - Gr local Grashoff number,g T w –T )x3/v2 - Nu local Nusselt number - Pr Prandtl number,v/ - Ra local Rayleigh number,g T w –T x 3/( v) - Re local Reynolds number,u x/v - Ri Richardson number,Gr/Re 2 - T fluid temperature - T w wall temperature - T free stream temperature - u velocity component in thex direction - u free stream velocity - v velocity component in they direction - x vertical coordinate measuring from the leading edge - y horizontal coordinate Greek symbols thermal diffusivity - thermal expansion coefficient - mixed convection parameter (Ra)1/4/Re)1/2 - pseudo-similarity variable,(y/x) - 0 conventional similarity variable,(y/x)Re 1/2 - dimensionless temperature, (T–T T W –T - unified mixed-flow parameter, [(Re) 1/2 + (Ra)1/4] - dynamic viscosity - kinematic viscosity - stretched streamwise coordinate or mixed convection parameter, [1 + (Re)1/2/(Ra) 1/4]–1=/(1 +) - density - Pr/(1 + Pr) w wall shear stress - stream function - Pr/(l+Pr)1/3 This research was supported by a grand from the National Science Council of ROC  相似文献   

12.
In a partially filled and constantly spinning container in zerogravity condition there arises under the action of an axial temperature gradient a thermo-capillary convection. This so-called Marangoni convection has been treated analytically for a directly imposed temperature gradient upon the free liquid surface and also for a constant but different temperature at the upper and lower disc wall. The streamfunction and circulation have been obtained, from which the velocity distribution could be determined.
Marangoni-Konvektion in einer in einem Behälter rotierenden Flüssigkeit
Zusammenfassung Durch das Vorhandensein eines axialen Temperaturgradienten ergibt sich in einem mit konstanter Geschwindigkeit rotierenden teilweise mit Flüssigkeit gefüllten Behälter eine thermalkapillare Korrelation. Diese sogenannte Marangoni-Konvektion wird analytisch behandelt für eine lineare axiale und eine beliebige axiale Temperaturverteilung auf der Flüssigkeitsoberfläche. Stromfunktion und Zirkulation werden analytisch bestimmt. Daraus ergeben sich die Geschwindigkeitsverteilungen in radialer, zirkumferentialer und axialer Richtung.

Nomenclature a radius of cylindrical container - b radius to free liquid surface - h height of container - I m, Km Modified Besselfunktions of first and second kind and orderm - k j roots of bi-cubic equation (24 b) - k=b/a diameter ratio of location of free liquid surface and container wall - r, , z polar cylindrical coordinates - T(r, z) temperature distribution of liquid - u, v, w radial-, circumferential-, and axial velocity of the liquid, resp. - thermal expansion coefficient - dynamic viscosity of liquid - =/ kinematic viscosity - density of liquid - surface tension of liquid - r , rz shear stresses - (r, z) circulation - (r, z) stream function - 0 speed of spin of container about axis of symmetry  相似文献   

13.
Summary Wood's analysis of detonation wave structure for an irreversible, unimolecular reaction with small rate parameter is used to study the influence of upstream properties on the coupling between pressure rise and reaction zones. The variation of a reduced distance due to adiabatic upstream burning, upstream heat addition, and variation of heat release per unit mass of reactant is considered. is the reduced distance between the point of minimum velocity (essentially the point of maximum pressure) and the point where the temperature is some chosen fraction of the final temperature, i.e., is a measure of the coupling between pressure rise and reaction zones.The wave structure immediately downstream of the pressure rise zone is found to be most sensitive to adiabatic upstream burning but much less sensitive to upstream heat addition and variation of heat release per unit mass of reactant. The first two processes cause to decrease because the temperature and reaction rate at the pressure maximum are increased. The last process causes to increase slightly because in this case the temperature and reaction rate at the pressure maximum is decreased. The wave structure far downstream of the pressure rise zone is not altered by adiabatic upstream burning but is influenced by upstream heat addition and variation of heat release per unit mass of reactant. The latter two processes cause to decrease. It is also shown that the wave structure immediately downstream of the pressure rise zone, for detonation waves which initially consist of widely separated pressure rise and reaction zones, is very sharply altered by the three processes of upstream variation here considered. Upstream burning and upstream heat addition cause rapid reductions in || while an increase in heat release per unit mass of reactant increases || for the same reasons as noted in the case of more closely coupled waves.Available experimental data are not directly applicable to the present results. However there is sufficient similarity between theory and experiment to support the qualitative trends predicted by this idealized analysis.  相似文献   

14.
Summary The propagation of time harmonic waves in a certain continuously layered medium is considered. The wave numberk=k() is assumed to vary with the Cartesian coordinate ; the law of variation is taken to be the one studied by Epstein. An integral representation for the wave function in this medium is derived. The method by which this is done is considerably simpler than the usual treatment of the problem with the aid of hypergeometric functions.  相似文献   

15.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

16.
Summary The heat transfer problems of forced-convection in non-circular pipes have many engineering applications. In this a paper a formal solution is given when the mapping function z=w()= a, which maps conformally the cross-section of the channel onto the unit circle in the -plane is known. The expression for the average velocity, average temperature, mixed mean temperature, heat transfer rate and the Nusselt number have been expressed in terms of the constants a n .  相似文献   

17.
Summary A collocation technique is used in conjunction with complex variable methods and conformal transformation to determine the elastic bending moments and shear forces in a uniformly loaded infinite flat plate structure, supported at each node of a regular rectangular lattice by rigid rectangular columns of finite dimensions.Nomenclature A n coefficients in the series solution of the deflection function - a, b lengths of slab panel sides - C edge of column capital - c 1, c 2 column side dimensions - D plate rigidity - f 1, f 2 functions defining the boundary conditions of the problem - k x , k y , k numerical factors for bending moments - k value characterizing the aspect ratio of the column sides - k n parameters associated with complex potentials - m, n coefficients defining the mapping function - M x , M y bending moments in x and y directions - M , M radial and tangential bending moments - Q x , Q y shear forces - q uniformly distributed load acting on plate surface - R constant of the mapping function - r, polar coordinate system - S plate region in the (x, y) plane - w deflection function in the plate region - n , n parameters associated with the deflection functions - unit circle - complex mapping plane - , curvilinear coordinate system - Poisson's ratio of the slab material - (), x (), (), (), () complex potentials defining the deflection functions - value of on the unit circle - () mapping function  相似文献   

18.
We consider infiltration into a soil that is assumed to have hydraulic conductivity of the form K = K = Kseh and water content of the form = K – r. Here h denotes capillary pressure head while Ks, , and r represent soil specific parameters. These assumptions linearize the flow equation and permit a closed form solution that displays the roles of all the parameters appearing in the hydraulic function K and . We assume Ks and r to be known. A measurement of diffusivity fixes the product of and resulting in a parameter identification problem for one parameter. We show that this parameter identification problem, in some cases, has a unique solution. We also show that, in some cases, this parameter identification problem can have multiple solutions, or no solution. In addition it is shown that solutions to the parameter identification problem can be very sensitive to small changes in the problem data.  相似文献   

19.
Cubic spline collection numerical method has been developed to determine two dimensional natural convection in a partitioned enclosure heated from below. The both sides of impermeable partition are considered to have continuity in heat flux and temperatures. The governing equations are solved with aid of the SADI procedure. Parametric studies of the effects of the partition and Rayleigh number on the fluid flow and temperature fields have been performed. Results show that the location of the partition and Rayleigh number have a significant influence on the flow and heat transfer characteristics.
Freie Konvektion in einem von unten beheizten, unterteiltem Hohlraum
Zusammenfassung Eine numerische dreidimensionale SplineMethode zur Berechnung der zweidimensionalen Naturkonvektion in einem von unten beheizten, unterteiltem Hohlraum wird vorgestellt. Der Wärmestrom und die Temperatur auf beiden Seiten der undurchlässigen Trennwand werden als konstant betrachtet. Mit Hilfe der SADI-Prozedur werden die beschreibenden Gleichungen gelöst. Über den Einfluß der Unterteilung und der Rayleigh-Zahl auf die Strömung des Fluids und das Temperaturfeld wird eine Parameter-Studie durchgeführt. Die Ergebnisse zeigen, daß die Anordnung der Unterteilung und die Rayleigh-Zahl einen entscheidenden Einfluß auf das Wärmeübertragungsverhalten haben.

Nomenclature A aspect ratio=L/H - g gravitational acceleration - H enclosure height - H1 distance between the top wall of enclosure and the partition - H2 distance between the bottom wall of enclosure and the partition - k thermal conductivity of fluid - L enclosure length - m number of vertical grid lines - n number of horizontal grid lines - Nu Nusselt number - P pressure - Pr Prandtl number - Q heat transfer across enclosure - Ra Rayleigh number based onH - t time - T dimensional temperature - T H temperature of warm horizontal wall - T L temperature of cold horizontal wall - T 0 average temperature=T(H+TL)/2 - T temperature difference between the hot and cold wall =T H–TL - u, U dimensional and dimensionless horizontal velocity - , V dimensional and dimensionless vertical velocity - x, X dimensional and dimensionless horizontal coordinate - y, Y dimensional and dimensionless vertical coordinate - fluid thermal diffusivity - coefficient of thermal expansion - viscosity - kinematic viscosity=/g9 - density - , dimensional and dimensionless stream function - dimensionless temperature - , dimensional and dimensionless vorticity - dimensionless time  相似文献   

20.
We assume that all solutions of a two-dimensional, periodically forced differential system (of period T) can be continued for all future time. If there exists one solution that is future bounded, then there exists a solution of period T (Theorem 3.4). This is the Massera theorem. To extend the Massera theorem, we assume that there exists a future bounded solution that is also bounded away from a known T-periodic solution . We prove that either there is another periodic solution of period qT for some integer q 1 or all compact motions that remain a finite distance from have a well-defined irrational rotation number about (Theorem 4.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号