首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Analytical derivations and numerical calculations are employed to gain insight into the parametric resonance of a stochastically driven van der Pol oscillator with delayed feedback. This model is the prototype of a self-excited system operating with a combination of narrow-band noise excitation and two time delayed feedback control. A slow dynamical system describing the amplitude and phase of resonance, as well as the lowest-order approximate solution of this oscillator is firstly obtained by the technique of multiple scales. Then the explicit asymptotic formula for the largest Lyapunov exponent is derived. The influences of system parameters, such as magnitude of random excitation, tuning frequency, gains of feedback and time delays, on the almost-sure stability of the steady-state trivial solution are discussed under the direction of the signal of largest Lyanupov exponent. The non-trivial steady-state solution of mean square response of this system is studied by moment method. The results reveal the phenomenon of multiple solutions and time delays induced stabilization or unstabilization, moreover, an appropriate modulation between the two time delays in feedback control may be acted as a simple and efficient switch to adjust control performance from the viewpoint of vibration control. Finally, theoretical analysis turns to a validation through numerical calculations, and good agreements can be found between the numerical results and the analytical ones.  相似文献   

2.
The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.  相似文献   

3.
We investigate the primary resonance of an externally excited van der Pol oscillator under state feedback control with a time delay. By means of the asymptotic perturbation method, two slow-flow equations on the amplitude and phase of the oscillator are obtained and external excitation-response and frequency-response curves are shown. We discuss how vibration control and high amplitude response suppression can be performed with appropriate time delay and feedback gains. Moreover, energy considerations are used in order to investigate existence and characteristics of limit cycles of the slow-flow equations. A limit cycle corresponds to a two-period modulated motion for the van der Pol oscillator. We demonstrate that appropriate choices for the feedback gains and the time delay can exclude the possibility of modulated motion and reduce the amplitude peak of the primary resonance. Analytical results are verified with numerical simulations.  相似文献   

4.
The paper presents analytical and numerical studies of the primary resonance and the 1/3 subharmonic resonance of a harmonically forced Duffing oscillator under state feedback control with a time delay. By using the method of multiple scales, the first order approximations of the resonances are derived and the effect of time delay on the resonances is analyzed. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. In order to numerically solve the problem of history dependence prior to the start of excitation, the concepts of the Poincaré section and fixed points are generalized. Then, a modified shooting scheme associated with the path following technique is proposed to locate the periodic motion of the delayed system. The numerical results show the efficacy of the first order approximations of the resonances.  相似文献   

5.
针对基于磁流变液阻尼器的半主动控制系统中存在的时滞问题, 采用了一种将可控的时滞变量引入半主动控制切换条件的控制策略, 研究了考虑时滞的天棚阻尼控制切换条件对半主动阻尼减振系统的影响, 分析了含有分数阶Bingham模型的线性刚度系统在基础激励下的振动特性. 利用平均法得到了系统在含时滞半主动控制策略下主共振响应的近似解析解, 根据Lyapunov理论分析了系统的稳定性. 通过数值解验证了近似解析解的准确性, 二者具有较好的一致性. 利用近似解析解分析了固定激励频率下时滞对系统幅频响应特性的影响, 以及主共振峰值响应和共振频率随时滞变化的特性规律. 结果表明, 含时滞的半主动控制系统存在一个小时滞区间, 使得系统的振幅在主共振峰对应的频率附近低于不考虑时滞时系统的振幅, 且存在最优时滞使得系统的振幅大幅度降低; 而大时滞的引入会加剧系统的振动, 导致系统的颤振. 确定了基于分数阶Bingham模型的线性刚度系统在天棚阻尼半主动控制下的时滞选取原则, 为振动系统半主动阻尼控制中的时滞选取提供了参考.   相似文献   

6.
A strategy for time-delayed feedback control optimization of quasi linear systems with random excitation is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged Ito equation. Finally, numerical examples are used to illustrate the proposed control method, and the numerical results are confirmed by Monte Carlo simulation .  相似文献   

7.
利用解析和数值方法,以弹簧摆为对象讨论了线性的时滞位移反馈控制对一类平方非线性系统动力学行为的影响。根据多尺度法得到了1:2内共振情况下一次近似解的慢变方程,基于此讨论了反馈控制参数对零解的稳定性和周期解振幅的影响。结果表明:耦合的反馈项在平均方程中并不出现。根据罗斯-霍尔维茨判据发现,没有反馈控制时该系统的零解总是不稳定的,而通过调整反馈增益或反馈时滞就可以很容易地使零解稳定。反馈时滞对周期解振幅的影响呈现周期性,反馈增益或时滞发生变化时,周期解振幅的变化会表现出鞍结分岔现象;同时基于MATLAB软件的数值计算结果验证了该理论分析的正确性。  相似文献   

8.
Periodic solutions for parametrically excited system under state feedback control with a time delay are investigated. Using the asymptotic perturbation method, two slow-flow equations for the amplitude and phase of the parametric resonance response are derived. Their fixed points correspond to limit cycles (phase-locked periodic solutions) for the starting system. In the system without control, periodic solutions (if any) exist only for fixed values of amplitude and phase and depend on the system parameters and excitation amplitude. In many cases, the amplitudes of periodic solutions do not correspond to the technical requirements. On the contrary, it is demonstrated that, if the vibration control terms are added, stable periodic solutions with arbitrarily chosen amplitude and phase can be accomplished. Therefore, an effective vibration control is possible if appropriate time delay and feedback gains are chosen.  相似文献   

9.
We investigate the parametric resonance of a van der Pol oscillator under state feedback control with a time delay. Using the asymptotic perturbation method, we obtain two slow-flow equations on the amplitude and phase ofthe oscillator. Their fixed points correspond to a periodic motion forthe starting system and we show parametric excitation-response andfrequency-response curves. We analyze the effect of time delay andfeedback gains from the viewpoint of vibration control and use energyconsiderations to study the existence and characteristics of limit cycles of the slow-flow equations. A limit cycle corresponds to a two-periodmodulated motion for the van der Pol oscillator. Analytical results areverified with numerical simulations. In order to exclude the possibilityof quasi-periodic motion and to reduce the amplitude peak of theparametric resonance, we find the appropriate choices for the feedbackgains and the time delay.  相似文献   

10.
谐和与窄带随机噪声联合作用下Duffing系统的参数主共振   总被引:5,自引:1,他引:5  
戎海武  徐伟  方同 《力学学报》1998,30(2):178-185
研究了Dufing振子在谐和与窄带随机噪声联合激励下的参数主共振响应和稳定性问题.用多尺度法分离了系统的快变项,并求出了系统的最大Lyapunov指数.本文还分析了失稳及跳跃现象,及系统的阻尼项、非线性项、随机项、确定性参激强度对系统响应的影响.数值模拟表明本文提出的方法是有效的.  相似文献   

11.
The principal resonance of two-degree-of-freedom non-linear system to narrow-band random external excitation is investigated. The method of multiple scales is used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response are studied by means of qualitative analysis. The effects of damping, detuning, bandwidth, and magnitudes of deterministic and random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that when the intensity of the random excitation increases, the nontrivial steady state solution may be changed from a limit cycle to a diffused limit cycle. Under some conditions the system may have two steady state solutions, saturation and jumps may exist.  相似文献   

12.
戎海武  王向东  孟光  徐伟  方同 《力学学报》2001,33(6):796-802
研究二自由度非线性系统在窄带随机噪声激励下的主共振响应,用多尺度法分离了系统的快变项,讨论了系统的阻尼项、随机项等对系统响应的影响。在一定条件下,系统具有两个均方响应值和跳跃现象,饱和现象也存在。数值模拟表明文中所提出的方法是有效的。  相似文献   

13.
研究了带平方二自由度非线性系统在随机窄带参数激励下,用多尺度法分离了系统的快变项,讨论了系统的各参数对响应的影响。在一定条件下,系统具有两个均方响应值,具有跳跃现象和饱和现象,数值模拟表明提出的方法是有效的。  相似文献   

14.
公徐路  许鹏飞 《力学学报》2018,50(4):880-889
针对具有记忆效应的欠阻尼系统, 存在时滞反馈与涨落质量, 本文主要研究了其输出稳态响应振幅的随机共振效应. 首先通过引入新变量和运用小时滞近似展开理论, 将具有非马尔科夫特性的原系统转化为等价的两维马尔科夫线性系统, 再利用Shapiro-Loginov公式和Laplace变换获得了系统响应的一阶稳态矩和稳态响应振幅的解析表达式. 结果表明: 当系统参数满足Routh-Hurwitz稳定条件时, 稳态响应振幅随质量涨落噪声强度、周期驱动信号频率以及时滞的变化均存在随机共振现象, 其中随机多共振现象也被观察到. 在适当范围内, 通过控制时滞反馈, 系统的随机共振效应随着时滞的增大而增强, 而较长的记忆时间及增大阻尼参数均对共振行为呈现抑制作用.有效调控时滞反馈与记忆效应的变化关系将有助于增强系统对周期驱动信号的响应强度. 最后, 通过数值模拟计算验证了理论结果的有效性.   相似文献   

15.
The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and multiplicative (parametric) excitation of wide-band random process is studied. First, the multi-time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into ordinary quasi linear system. Then, the averaged Itô stochastic differential equations are derived by using the stochastic averaging method for quasi linear systems and the expression for the largest Lyapunov exponent of the linearized averaged Itô equations is derived. Finally, the necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent to be negative. An example is worked out in detail to illustrate the application and validity of the proposed procedure and to show the effect of the time delay in feedback control on the largest Lyapunov exponent and the stability of system.  相似文献   

16.
The maglev system with delayed position feedback control is excitated by the deflection of flexible guideway and resonant response may take place. This paper concerns the non-resonant response of the system by employing centre manifold reduction and method of multiple time scales. The dynamical model is presented and expanded to the third-order Taylor series. Taking time delay as its bifurcation parameter, the condition with which the Hopf bifurcation may occur is investigated. Centre manifold reduction is applied to get the Poincaré normal form of the nonlinear system so that we can study the relationship between periodic solution and system parameter. At first, the non-resonant periodic solution of the normal form is calculated based on the method of multiple time scales. Then the bifurcation condition of the free oscillation in the solution is analyzed, and we get the conditions with which the free oscillation has maximum and minimum values. The relationship between external excitation and the periodic solution is also discussed in this paper. Finally, numerical simulation results show how system and excitation parameters affect the system response. It is shown that the existence of the free oscillation and the amplitude of the forced oscillation can be determined by time delay and control parameters. So felicitously selecting them can suppress the oscillation effectively.  相似文献   

17.
In this paper, we compare two approaches for determining the amplitude equations; namely, the integral equation method and the method of multiple scales. To describe and compare the methods, we consider three examples: the parametric resonance of a Van der Pol oscillator under state feedback control with a time delay, the primary resonance of a harmonically forced Duffing oscillator under state feedback control with a time delay, and the primary resonance together with 1:1 internal resonance of a two degree-of-freedom model. Using the integral equation method and the method of multiple scales, the amplitude equations are obtained. The stability of the periodic solution is examined by using the Floquet theorem together with the Routh–Hurwitz criterion (without time delay) and the Nyquist criterion (with time delay). By comparison with the solution obtained by the numerical integration, we find that the accuracy of the integral equation method is much better.  相似文献   

18.
戎海武  王向东  孟光  徐伟  方同 《力学季刊》2003,24(2):211-218
在随机振动的研究中,研究较多的是系统在宽带噪声作用下的响应问题,对于非线性系统特别是多自由度非线性系统在窄带随机噪声作用下的响应问题则研究较少。本文研究了三自由度非线性系统在窄带随机噪声激励下的主共振响应和稳定性问题。用多尺度法分离了系统的快变项,给出了系统响应的振幅和相位角满足的方程。用摄动法讨论了系统随机项对系统响应的影响。当随机扰动较小时,在一定的参数范围内,对应于不同的初值,系统具有两个均方响应值,随机饱和现象也存在。当随机扰动增大时,系统可从一个大的响应突跳为一个小的响应,或从一个小的响应突跳为一个大的响应,即存在随机跳跃现象。数值模拟表明本文提出的方法是有效的。  相似文献   

19.
IntroductionThestudyoftheresponseofnonlinearsystemstonarrow_bandrandomexcitationofconsiderableimportance.Forexample ,theexcitationofsecondarysystemwouldbeanarrow_bandrandomprocessiftheprimarysystemcouldbemodeledasasingle_degree_of_freedomsystemwithlightdampingsubjecttowide_bandexcitation .Inthetheoryofnonlinearrandomvibration ,mostresultsobtainedsofarareattributedtotheresponseofnonlinearoscillatorstowide_bandrandomexcitation .Incomparison ,resultsontheeffectofnarrow_bandexcitationonnonlinearos…  相似文献   

20.
A weakly nonlinear oscillator is modeled by a differential equation. A superharmonic resonance system can have a saddle-node bifurcation, with a jumping transition from one state to another. To control the jumping phenomena and the unstable region of the nonlinear oscillator, a combination of feedback controllers is designed. Bifurcation control equations are derived by using the method of multiple scales. Furthermore, by performing numerical simulations and by comparing the responses of the uncontrolled system and the controlled system, we clarify that a good controller can be obtained by changing the feedback control gain. Also, it is found that the linear feedback gain can delay the occurrence of saddle-node bifurcations, while the nonlinear feedback gain can eliminate saddle-node bifurcations. Feasible ways of further research of saddle-node bifurcations are provided. Finally, we show that an appropriate nonlinear feedback control gain can suppress the amplitude of the steady-state response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号