首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
六元杂环分子电学特性的理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
马勇  邹斌  李宗良  王传奎  罗毅 《物理学报》2006,55(4):1974-1978
在第一性原理基础上,利用弹性散射格林函数方法,研究了六元杂环分子结2,5-哒嗪二硫酚 、2,5-吡嗪二硫酚和2,5-嘧啶二硫酚的电子输运特性,分析了终端原子的选取对杂环分子吡 啶电学特性的影响. 利用分子前线轨道理论和微扰方法定量地确定了分子与金属的相互作用 能参数. 计算结果表明,2,5-哒嗪二硫酚具有较好的电学特性,而2,5-嘧啶二硫酚在外加电 压较低时电导值比较小. 对于吡啶分子,选取硒原子作为终端原子时,其导电特性优于分别 以氧原子和硫原子作为终端原子的情况. 关键词: 六元杂环分子 伏安特性 电子输运 分子电子学  相似文献   

2.
Results of quantum-chemical studies of the nile red (NR) molecule and its protonated structures by the INDO/S method are presented. It is demonstrated that the best agreement between the calculated and experimental data is obtained for the flat molecule in the ground electron state. Energies of the strongest singlet and triplet electronic states, molecular nature of these states, transition oscillator force, dipole moments in the ground and excited states, electron density distribution around atoms and molecular fragments in the S0 and S1 states, and rate constants of radiative, internal, and intercombination conversion are presented for the NR molecule and its protonated structures. The most probable NR protonation centers are analyzed using the molecular electrostatic potential (MESP) method. It is established that the reaction of proton addition to the NR molecule proceeds at the cyclic nitrogen atom. As demonstrated the results of quantum-chemical calculations, low fluorescent properties of the protonated NR structures (with a quantum yield of 4%) are due to a high rate of the S1 – T4 intercombination conversion.  相似文献   

3.
运用第一原理密度泛函理论方法,首先计算了MoSi_2各清洁表面的表面能,(001)Si-|-Si断面具有较低的表面能,是MoSi_2最可能的解理面;通过生成能及键布居分析研究了单氧原子、双氧原子及氧分子在(001)Si-|-Si断面的吸附行为,发现单氧原子在空位处吸附最稳定,此时O极易与Si结合,得到的Si-O-Si键长及键角与SiO_2的非常接近,表明低浓度下O极易与表面的Si结合生成SiO_2;双氧原子发生空位+顶位吸附时O原子除与Si有强作用外,可与Mo有一定相互作用;氧分子以平行的方式接近空位最有利于吸附,此时氧分子最易分解为氧原子,发生氧原子在空位的吸附.  相似文献   

4.
Crystal structures of carbon dioxide deuterohydrate were studied by neutron powder diffraction at temperatures from 10 to 200 K. Maps of scattering length density distribution were obtained using a maximum entropy method (MEM), which clarified the motion of CO2 molecules in the hydrate. In small cages, the carbon atom of the CO2 molecule is at the center of the cage, and the oxygen atoms of CO2 revolve freely around the carbon atom. In large cages, the carbon atom also is at the center of the cage, but the oxygen atoms tend to revolve around the carbon atom along the plane parallel to the hexagonal facets of the cage.  相似文献   

5.
The structure and bonding of molecular furan, C4H4O, on Pd(111) has been investigated using density functional theory (DFT) calculations and the results compared with those of a recent experimental investigation using scanned-energy mode photoelectron diffraction (PhD). The DFT results confirm the orientation of the molecular plane to be essentially parallel to the surface and show a clear energetic preference for one of the two possible structures identified in the PhD study, namely that with the molecule centred over the hollow sites of the surface. Two slightly different geometries at the hollow sites are found to be essentially energetically equivalent; in both cases, one Pd surface atom bonds to two C atoms, while two other Pd atoms each bond to one C atom. These structures differ in that in one case the pair of C atoms bonding to a single Pd atom are both β-C (C atoms not bonded to O in the furan molecule), whereas in the second case this pair of C atoms comprises one β-C and one α-C (adjacent to the O atom in furan). In both structures the C–Pd bonding is accompanied by displacements of the H and O atoms away from the surface and out of the molecular plane and local C–Pd coordination consistent with a rehybridisation of the C bonding to sp3 character.  相似文献   

6.
Conformations of He-jet-cooled trimethyl[(3-indole)ethoxy]silane (TIES) have been studied using a laser spectroscopy technique in combination with quantum-chemical computations. Six probable conformers of the molecule were computed, of which only two conformations were observed. Based on an analysis of fluorescence excitation spectra, fluorescence spectra, shapes of rotational band contours at the electronic S0–S1 transition of TIES, and theoretical computations, the above conformers were assigned to steric structures. Twisted structures have the lowest energy due to intramolecular hydrogen bonds C - H ?O < CSi C - H \cdots O <_C^{Si} between hydrogen atoms of methyl groups and an oxygen atom and C–H···π between H and the π-electron cloud of the indole ring.  相似文献   

7.
运用GULP计算软件模拟计算了PbWO4(PWO)晶体中不同位置的填隙氧原子点缺陷的生成能,计算结果表明:当填隙氧原子存在于(WO4)2-的周围时,填隙氧原子点缺陷的生成能最低;进一步运用基于密度泛函理论的全数值自洽DV-Xα方法计算了包含填隙氧原子的PWO晶体的态密度,计算结果表明:当填隙氧处在(WO4)2-的周围时,容易与(WO4)2-上的一个或两个氧离子相互作用形成分子离子O22-或O34-,通过分析这些计算结果,认为PWO晶体中350 nm吸收带的出现很可能与晶体中的氧分子离子有关.  相似文献   

8.
The effect of hydrogen bonds on the spectral-luminescent and proton-acceptor properties of 8-azagone-12,17-dione and its 2,3-dimethoxy substituent is examined. The method of molecular electrostatic potential is used for choosing a spatial model for complexes with the 1:2 mixture ratio. Hydrogen bonding of oxygen atoms of C and D cycles of both molecules with water molecules is shown to affect but slightly the spectral-luminescent properties. The effect of hydrogen bonds on the proton-acceptor properties of molecules both in the ground and fluorescent states is most pronounced: the proton-acceptor properties of oxygen atoms of the C, D, and methoxy groups decrease, particularly in the fluorescent state, while the same properties of the nitrogen atom increase. We can assume on the basis of these facts that the role of the nitrogen atom in the intermolecular interaction is increased when it is in the S 1 state.  相似文献   

9.
The localization of molecular orbitals in 2,4,6-substituted derivatives of pyrylium is studied. The conformation of three asymmetrical molecules with oxyethyl substituents in positions 2 and 4 and different substituents in position 6 of the pyrylium ring is calculated by the AM1 method. The localization of the four upper occupied and two lower unoccupied MOs is determined, the fragment localization numbers are found, and the energies of five optical transitions, localization numbers, and the numbers of charge transfer between fragments are calculated. The conformation analysis of molecules in the S 0 and S 1 states is performed. Solid and liquid pyrylium solutions of different viscosity and polarity are experimentally investigated. The absorption spectra are recorded and absorption cross sections are measured, as well as fluorescence spectra and fluorescence anisotropy spectra. The following conclusions are made. In nonplanar molecules of pyrylium salts, four absorption transitions are localized at different parts of the molecule containing the pyrylium ring and one of the substituents. Upon excitation of molecules with complex substituents in position 6, the molecular fragment in position 2 turns around. This results in a flattening of the molecular fragment containing the pyrylium ring and substituents 2 and 6 on which the fluorescence transition is localized. The rearrangement involves the lowamplitude motion; it occurs almost without a loss of the excitation energy and only slightly affects the localization of molecular orbitals. As a result, two excited conformers are formed that possess close absorption and fluorescence properties. The radiative transitions in these conformers completely determine fluorescence of liquid solutions of any viscosity, including glycerol solutions. Strong solvatochromism is related to the nonplanar structure of stable pyrylium molecules, whereas the weak solvatochromism of liquid solutions is caused by localization of radiative transitions on a planar fragment of unstable fluorescing conformers.  相似文献   

10.
We have systematically investigated the growth behavior and stability of small stoichiometric (TiO(2))(n) (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO(2))(n) clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO(2))(n) cluster and a single water molecule have been studied. The binding energy (E(b)) of the H(2)O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO(2))(n) clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been investigated for possible functionalization. All these elements interact strongly with this cluster, and a permanent magnetic moment is induced upon adsorption of Co and V atoms. We have observed gap localized TM states leading to significant HOMO-LUMO gap narrowing, which is essential to achieve visible light response for the efficient use of TiO(2) based materials. In this way, electronic and optical as well as magnetic properties of TiO(2) materials can be modulated by using the appropriate adsorbate atoms.  相似文献   

11.
The effect of acid-base interactions on the photophysical properties of 6,7-dimethoxy-3,4-dihydroisoquinoline in protic solvents is studied by the methods of steady-state and picosecond spectroscopy. It is found that the specific features of the spectral and luminescent properties of solutions of 6,7-dimethoxy-3,4-dihydroisoquinoline are connected with the presence of emission centers of two types—solvated initial molecules and their protonated cationic forms. Considerable long-wavelength shifts observed in the electronic absorption and fluorescence spectra of the cationic form of the molecule as compared to the spectra of its initial form are caused by the elongation of a conjugated chain present in the fragment of the molecule that separates the nitrogen atom and the oxygen atoms of the methoxy groups. The transition of the cationic form of the molecule to an excited electronic state is not accompanied by a change in its dipole moment.  相似文献   

12.
白景旭  韩小萱  白素英  焦月春  赵建明  贾锁堂 《物理学报》2018,67(23):233201-233201
本文主要从理论和实验上研究超冷铯(60D5/22 Rydberg分子的双色光缔合光谱.数值计算了铯60D5/2 Rydberg原子对态的长程电多极相互作用和(60D5/22 Rydberg分子的绝热势能曲线,获得了(60D5/22 Rydberg分子的势阱深度和平衡间距.实验上利用双色光缔合超冷铯原子的方法制备了(60D5/22 Rydberg分子.其中,第一色激光(pulse-A)双光子共振激发种子Rydberg原子A;第二色激光(pulse-B,失谐于分子的束缚能)共振激发第二个Rydberg原子B,原子A与B由分子势阱束缚形成超冷(60D5/22 Rydberg分子.由脉冲场电离探测技术获得Rydberg分子的光缔合光谱,测量的Rydberg分子的势阱深度与理论计算结果相一致.  相似文献   

13.
The adsorption of fluorescein on the Ag(1 1 0) surface has been investigated by the first-principles pseudopotential method. Various adsorption geometries have been calculated and the energetically most favorable structure of fluorescein/Ag(1 1 0) was identified. The fluorescein molecule, in most favorable structure, is on hollow site, and the adsorption energy is 2.34 eV. Here the adsorption sites refer to the positions at the first layer of the substrate where the middle carbon atom of the fluorescein molecule is located. The bonding strength of the fluorescein molecule to the Ag substrate is site selective, being determined by electron transfer to the oxygen atoms of the molecule and local electrostatic attraction between the oxygen atoms and the silver atoms.  相似文献   

14.
The elastic scattering Green function method has been developed to describe the I–V characteristics of molecular wires. The molecular electronic structure and the interaction between the molecule and the gold surface are two key factors for the charge transport properties of molecular wires in the formulas. Anab initio calculation at the hybrid density functional theory level is carried out to obtain the electronic structure of 4-4′-dimercaptodibenzene molecule. The frontier orbit theory and the perturbation theory are employed to determine the constant of the interaction energy between molecule and surface quantitatively. The numerical results show that the bonding between the sulfur atom and the gold atoms corresponds mainly to the covalent bond. Some molecular orbits are extended over molecule and gold cluster that certainly give channels for the charge transport, other molecular orbits are localized and the charge transport can take place by tunnel mechanism. At zero bias region, there exists a current gap. With the increasing bias, the conductance of the wire takes a shape of plateaus.  相似文献   

15.
张超  王永亮  颜超  张庆瑜 《物理学报》2006,55(6):2882-2891
采用嵌入原子方法的原子间相互作用势,通过分子动力学方法模拟了低能Pt原子与Cu,Ag,Au,Ni,Pd替位掺杂Pt(111)表面的相互作用过程,系统研究了替位原子对表面吸附原子产额、溅射产额和空位缺陷产额的影响规律,分析了低能沉积过程中沉积原子与基体表面的相互作用机理以及替位原子的作用及其影响规律.研究结果显示:替位原子的存在不仅影响着沉积能量较低时的表面吸附原子的产额与空间分布,而且对沉积能量较高时的低能表面溅射过程和基体表面空位的形成产生重要影响.替位原子导致的表面吸附原子产额、表面原子溅射以及空位形 关键词: 分子动力学 低能粒子 替位掺杂 表面原子产额 溅射 空位  相似文献   

16.
Theoretically possible stable conformers of free roscovitine molecule in its electronic ground state were searched by means of molecular dynamics and energy minimization calculations performed using the MM2 force field. Afterwards, geometry optimization and thermochemistry calculations were carried out at room temperature for each of the found minimum‐energy conformers using the MP2 and DFT based electronic structure methods and different Pople‐style basis sets. The results obtained from these calculations confirmed that the strong intramolecular hydrogen bonding between the purine‐nitrogen and hydroxyl‐hydrogen atoms plays an important role on the rigidity of roscovitine molecule and causes a dramatic reduction in the number of the possible stable conformers of this molecule at room temperature. Furthermore, the same calculation results also revealed that two of the found seven stable conformers are considerably more favorable in energy than the others and thus dominate the experimental room‐temperature spectra of the molecule. In the light of the theoretical vibrational spectral data obtained for these two conformers, a successful assignment of the fundamental bands observed in the experimental IR and Raman spectra recorded at room temperature for solid roscovitine and for its ethanol solution is given, and the effects of the substitution and intramolecular hydrogen bonding on the fundamental bands associated with purine and phenyl group vibrations are discussed in detail. In the fitting of the calculated harmonic wavenumbers to the corresponding experimental wavenumbers, two different scaling procedures, called ‘dual scale factors’ and ‘Scaled Quantum Mechanical Force Field (SQM FF) methodology’, were applied independently. Both procedures yielded results generally in good agreement with the experiment; however, the SQM FF methodology proved its superiority over the other. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Methane gas (CH4) is a chemical compound comprising a carbon atom surrounded by four hydrogen atoms, and carbon nanotubes have been proposed as possible molecular containers for the storage of such gases. In this paper, we investigate the interaction energy between a CH4 molecule and a carbon nanotube using two different models for the CH4 molecule, the first discrete and the second continuous. In the first model, we consider the total interaction as the sum of the individual interactions between each atom of the molecule and the nanotube. We first determine the interaction energy by assuming that the carbon atom and one of the hydrogen atoms lie on the axis of the tube with the other three hydrogen atoms offset from the axis. Symmetry is assumed with regard to the arrangement of the three hydrogen atoms surrounding the carbon atom on the axis. We then rotate the atomic position into 100 discrete orientations and determine the average interaction energy from all orientations. In the second model, we approximate the CH4 molecule by assuming that the four hydrogen atoms are smeared over a spherical surface of a certain radius with the carbon atom located at the center of the sphere. The total interaction energy between the CH4 molecule and the carbon nanotube for this model is calculated as the sum of the individual interaction energies between both the carbon atom and the spherical surface and the carbon nanotube. These models are analyzed to determine the dimensions of the particular nanotubes which will readily suck-up CH4 molecules. Our results determine the minimum and maximum interaction energies required for CH4 encapsulation in different tube sizes, and establish the second model of the CH4 molecule as a simple and elegant model which might be exploited for other problems.  相似文献   

18.
脱氧胆酸钇络合物的EXAFS和FTIR表征   总被引:4,自引:1,他引:3  
用EXAFS,FTIR以及ICP等实验方法,对脱氧胆酸钇的结构进行了初步探讨。实验结果证实,钇与脱氧胆酸配位,生成稀土络合物,其中钇周围有八个氧原子,配位数为八,Y-O平均距离为0.234nm。脱氧胆酸中羧基氧原子,羟基氧原子均与钇发生配位作用。  相似文献   

19.
Accurate molecular imaging via high-order harmonic generation relies on comparing harmonic emission from a laser-irradiated molecule and an adequate reference system. However, an ideal reference atom with the same ionization properties as the molecule is not always available. We show that for suitably designed, very short laser pulses, a one-to-one mapping from high-order harmonic frequencies to electron momenta in above-threshold ionization exists. Comparing molecular and atomic momentum distributions then provides the electron recollision amplitude in the molecule for enhanced molecular imaging. The method retrieves the molecular recombination transition moments highly accurately, even with suboptimal reference atoms.  相似文献   

20.
采用基于第一性原理的密度泛函理论(DFT)和局域密度近似(LDA)方法,优化计算硅铝酸银分子筛吸附Ne原子体系的几何结构,能量,电子能带和电荷密度分布。结果表明,硅铝酸银为层状的周期结构,具有直径为a=5.390 Å的孔道。在分子晶体孔道的轴线上,桥O原子附近(I)和表面Ag+离子附近(II)的能量均有利于对Ne原子的吸附。尽管Ne(I)的能量最低,但是SiO4四面体排斥产生的能垒在动力学上不利于Ne原子的吸附。电子能带和电荷分布显示,Ne(II)原子主要受库仑极化的影响,其电子能带的能量较高,Ne(I)原子与桥O原子之间的共价作用能够降低对应的电子能带能量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号