首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
基于谱有限元法发展了一种由压电晶片主动传感器(PWAS)、胶层和主结构组成的三层模型,来模拟PWAS激励结构中Lamb波的传播。首先在各层使用不同的梁理论,推导PWAS-胶层-主结构三层模型的控制方程和力的边界条件,建立谱有限元模型。通过和传统的有限单元法进行比较,表明了在显著提高计算效率的同时,所发展谱有限元模型在分析结构中Lamb波传播上仍具有较高的精度。分析了激励频率、PWAS长度与厚度、胶层厚度等参数变化对输出电压信号的影响,可以为基于PWAS和Lamb波的主动健康监测技术提供参考。  相似文献   

2.
江守燕  万晨  孙立国  杜成斌 《力学学报》2021,53(10):2724-2735
结构内部缺陷的识别是结构健康监测的重要研究内容, 而当前以无损检测为主的结构安全检测多以定性分析为主, 定量识别缺陷的尺度较困难. 本文将比例边界有限元法(scaled boundary finite element methods, SBFEM)和深度学习相结合, 提出了基于Lamb波在结构中传播时的反馈信号定量识别结构内部裂纹状缺陷的反演模型. 通过随机生成缺陷信息(位置、大小), 采用SBFEM模拟Lamb波在含不同缺陷信息的结构中的信号传播过程, SBFEM仅需对结构边界离散可最小化网格重划分过程, 大大提高了计算效率. Lamb波在含裂纹状缺陷结构中传播时观测点的反馈信号包含大量的裂纹信息, 基于这一特性可为深度学习模型提供足够多的反映问题特性的训练数据. 建议的缺陷反演模型规避了传统反分析问题的目标函数极小化迭代过程, 在保证计算精度的前提下大大减少了计算成本. 对含单裂纹和多裂纹板的数值算例进行分析, 结果表明: 建立的缺陷识别模型能够准确地量化结构内部的缺陷, 对浅表裂纹亦有很好的识别效果, 且对于含噪信号模型仍具有较好的鲁棒性.   相似文献   

3.
朱振宇  郑阳  陈迪 《实验力学》2013,28(5):649-656
本文采用电磁声传感器接收单一S0模态激励,测量Lamb波在板中不同深度的槽形裂纹处的反射与透射,用于对已知扩展长度的表面裂纹进行深度测量。然后分析了Lamb波模态的频散与波动特性,由超声Lamb波的波结构,近似计算了S0模态入射到裂纹时的反射系数。计算结果与实验结果一致。结果表明,Lamb波在有限长裂纹处的反射系数可采用二维模型中的反射系数求解公式近似求解。采用电磁超声传感器接收单一S0模态激励,重复测量稳定性高,适用于Lamb波反射系数的测量。Lamb波的反射系数与裂纹深度有很好的对应关系,可用于板表面已知长度裂纹的深度测量。  相似文献   

4.
张默涵  李录贤 《力学学报》2022,54(3):697-706
花朵、树叶等自然界的板状结构因发生大变形而具有婀娜多姿的形状,工程实际的板状结构也会出现类似现象.板状结构是指完全相同的面状结构在厚度方向堆砌而形成的厚度尺寸比面内尺寸相比较小的一类特殊三维结构,在生长或外部环境等因素产生的不协调变形激励下,这类结构会形成内部应力,本文研究因之而发生的自发大变形行为.首先,将板状结构的...  相似文献   

5.
Based on Lamb wave analysis of propagation in plate-like structures, a damage detection method is proposed that not only locates the position of the damage accurately but also estimates its size. Similar damage detection methods focus only on localization giving no quantitative estimation of extent. To improve detection, we propose two predictive circle methods for size estimation. Numerical simulations and experiments were performed for an aluminum plate with a hole. Two PZT configurations of different sizes were designed to excite and detect Lamb waves. From cross-correlation analysis, the damage location and extent can be determined. Results show that the proposed method enables a better quantitative resolution in detection, the size of the inspection area influences the accuracy of damage identification, and the closer is the inspected area to the damage, the more accurate are the results. The method proposed can be developed into a multiple-step detection method for multi-scale analysis with prospective accuracy.  相似文献   

6.
Lamb waves using surface-bonded piezoelectric transducers (PZTs) have been widely used for nondestructive testing (NDT). However, the identification of individual Lamb wave modes and the subsequent data interpretation are often difficult due to the dispersive and multimodal natures of Lamb waves. To tackle the problem, a Lamb wave mode decomposition technique using concentric ring and circular PZTs is proposed. Its advantages over the conventional approaches are that (1) PZTs need to be placed only a single surface of a specimen and (2) mode decomposition can be performed at any desired frequency without changing the PZT size and/or spacing configuration. The proposed mode decomposition technique is formulated by solving 3D Lamb wave propagation equations considering the PZT size and shape, and this technique requires a specially designed dual PZT composed of concentric ring and circular PZTs. The effectiveness of the proposed technique for the Lamb wave mode decomposition is investigated through numerical simulation and experimental tests performed on an aluminum plate.  相似文献   

7.
基于Mindlin板理论的偏移损伤成像数值仿真研究   总被引:1,自引:0,他引:1  
严刚  周丽 《力学学报》2010,42(3):499-505
提出了一种应用散射Lamb波的偏移技术对板结构中多部位损伤进行实时识别. 基于Mindlin板理论,推导了板结构中弥散性弯曲波频率-波数域的快速偏移方法. 首先对由线性传感器阵列激励和接收到的入射和散射波场在波数-频率域分别进行延拓,然后根据Huygens原理,结合波场延拓的时间一致性原理施加成像条件,对损伤进行成像识别. 数值仿真研究采用基于Mindlin板理论的有限差分法模拟结构中含不同形状及尺寸损伤时的散射波场. 对模拟散射波场进行偏移成像的结果表明该方法不仅能够识别多部位损伤的位置,还具有识别损伤程度的能力,其快速计算的优点满足在线结构健康监测系统对实时性的要求.   相似文献   

8.
众所周知Lamb波在复合材料中的传播呈各向异性的特点,经典有限元法模拟这类问题效率不高,所以,本文采用谱有限元法进行研究。先建立了一种新的谱有限板单元,该单元以Gauss-Lobatto-Legendre点作为节点,使质量矩阵是对角矩阵;另外,该单元采用了扩展的位移场,能够较好地模拟板结构的三维特性。然后,对复合材料板结构中Lamb波在对称模式与反对称模式下的传播速度进行了求解,将计算结果与Mindlin板谱单元的结果以及三维弹性理论的结果进行了比较,并讨论了Lamb波在反对称层合板中的传播特点。最后,模拟了Lamb波在含和不含损伤复合材料层合板中的传播,数值结果表明所建立的谱有限板单元可以较好地模拟出Lamb波在复合材料板结构中的传播特性。  相似文献   

9.
The response features of second-harmonic generation (SHG) of primary Lamb wave propagation to the thickness of microdamage layer (MDL) in a solid plate have been theoretically and numerically investigated in this paper. Here the solid plate with a MDL is regarded as a double-layered plate in analysis of nonlinear Lamb wave propagation. On the basis of a second-order perturbation approximation and modal expansion analysis, the physical process of cumulative SHG by primary Lamb wave propagation in a solid plate with a MDL has been investigated. The influence of variation in the thickness of MDL on the effect of SHG of primary S0 mode, which satisfies an approximate phase velocity matching in the low frequency region, has been theoretically analyzed, and then the finite element (FE) simulation has been carried out to validate the results of the theoretical predictions. A close agreement between the theoretical analyses and FE simulations validates the effectiveness of using the effect of SHG of primary S0 mode for characterizing changes in the thickness of MDL. Moreover, change mechanism of nonlinear acoustic parameter with the thickness of MDL is revealed It is expected that the results obtained can provide a convenient means for accurately characterizing nonhomogeneous microdamage (MDL thickness) in layered plates.  相似文献   

10.
The effect that a circular discontinuity (due to thickness reduction) in an Aluminum plate has on the direction of Lamb wave propagation was experimentally and theoretically studied. Broadband Lamb waves were generated by a pulsed Nd:YAG laser and optically detected with a photo-EMF detector to increase spatial resolution. The experimental results show that thickness reduction modifies the time of flight (TOF) for S0 and A0 vibration modes and generates a change in direction of the ultrasonic Lamb wave. The change in the TOF as a function of distance and thickness reduction was numerically determined using ray theory and then compared to experimental results. It is shown that the change in the direction of propagation depends on the vibrational mode and frequency of the Lamb waves and this can affect the detection and characterization of a hidden discontinuity.  相似文献   

11.
In this paper, a novel wavelet based spectral finite element is developed for studying elastic wave propagation in 1-D connected waveguides. First the partial differential wave equation is converted to simultaneous ordinary differential equations (ODEs) using Daubechies wavelet approximation in time. These ODEs are then solved using finite element (FE) technique by deriving the exact interpolating function in the transformed domain. Spectral element captures the exact mass distribution and thus the system size required is very much smaller then conventional FE. The localized nature of the compactly supported Daubechies wavelet allows easy imposition of initial-boundary values. This circumvents several disadvantages of the conventional spectral element formulation using Fast Fourier Transforms (FFT) particularly in the study of transient dynamics. The proposed method is used to study longitudinal and flexural wave propagation in rods, beams and frame structures. Numerical experiments are performed to show the advantages over FFT-based spectral element methods. The efficiency of the spectral formulation for impact force identification is also demonstrated.  相似文献   

12.
对于板壳问题,共有三种数值模拟方案:线性或非线性的板壳理论、退化连续体方案和直接三维连续体方案。无网格法近似函数可具有C1甚至更高的连续性,便于在K irchhoff-Love理论中应用。但当各种无网格法用于M ind lin-R e issner板理论时,会遇到数值锁死的困扰。对比之下,三维连续体方案是最简单,最精确但并不常用的一种方案。无网格法近似函数具有高度光滑性,在板壳的厚度方向仅布置2~5层点就可以很好地捕捉此方向场的梯度,同时还可以在一定参数范围内避免剪切和体积锁死,在处理复杂本构关系、非线性板壳等问题中更是具有很大优势。本文采用无网格伽辽金法(EFG)和三维连续体方案分析了线性板壳问题,与有限单元法做了对比,并讨论了数值锁死等问题。  相似文献   

13.
基于频率-波数域偏移的损伤被动成像识别研究   总被引:1,自引:0,他引:1  
提出了一种应用Lamb波对板结构中多部位损伤源进行被动成像识别的方法.基于Mindlin板理论,推导了板结构中弥散性Lamb波频率-波数域的快速偏移方法,结合爆炸成像原理,对损伤源发出的Lamb波信号进行回传成像.由于损伤源的发生时刻未知,将使用不同假设发生时刻(即不同长度)的Lamb波信号生成一系列图像,通过最小熵原理从中确定最优图像,识别出损伤源的位置和发生时刻.进行了数值仿真研究来表明所提出方法的有效性.  相似文献   

14.
The finite element modeling and fracture mechanics concept were used to study the interfacial fracture of a FRP-concrete hybrid structure. The strain energy release rate of the interfacial crack was calculated by the virtual crack extension method. It is shown that the crack growth has three phases, namely, cracking initiation, stable crack growth and unstable crack propagation. The effects of geometric and physical parameters of the hybrid beam on the energy release rate were considered. These parameters include Young’s moduli of the FRP, the concrete and the adhesive, thickness of the FRP plate and adhesive, and the distance of FRP plate end from the beam end. The numerical results show that the energy release rate of the interfacial crack is influenced considerably by these parameters. The present investigation can contribute to the mechanism understanding and engineering design of the hybrid structures.  相似文献   

15.
Nowadays, numerical simulation of 3D fatigue crack growth is easily handled using the eXtended Finite Element Method coupled with level set techniques. The finite element mesh does not need to conform to the crack geometry. Most difficulties associated to complex mesh generation around the crack and the re-meshing steps during the possible propagation are hence avoided. A 3D two-scale frictional contact fatigue crack model developed within the X-FEM framework is presented in this article. It allows the use of a refined discretization of the crack interface independent from the underlying finite element mesh and adapted to the frictional contact crack scale. A stabilized three-field weak formulation is also proposed to avoid possible oscillations in the local solution linked to the LBB condition when tangential slip is occurring. Two basic three-dimensional numerical examples are presented. They aim at illustrating the capacities and the high level of accuracy of the proposed X-FEM model. Stress intensity factors are computed along the crack front. Finally an experimental 3D ball/plate fretting fatigue test with running conditions inducing crack nucleation and propagation is modeled. 3D crack shapes defined from actual experimental ones and fretting loading cycle are considered. This latter numerical simulation demonstrates the model ability to deal with challenging actual complex problems and the possibility to achieve tribological fatigue prediction at a design stage based on the fatigue crack modeling.  相似文献   

16.
The extended finite element method is used to analyze a plate with two parallel edge cracks impacted by a cylindrical projectile. The influence of the impact speed, crack length,plate thickness and notch tip radius on the crack initiation and propagation is studied. Dynamics equations are solved by an implicit time integration scheme which is unconditionally stable. Very good agreement is achieved between numerical predictions and experimental results. The critical velocity of the crack initiation under different conditions is examined. The influence of the crack length is greater than that of the impact speed, plate thickness and notch tip radius.  相似文献   

17.
The work is concerned with the modeling and simulation of large scale ductile fracture in plate and shell structures. A meshfree method – the reproducing kernel particle method (RKPM) – is used in numerical computations in order to enact dynamic crack propagation without remeshing. There are several novelties in the present approach. First, we have developed a crack surface approximation and particle split algorithm for three-dimensional through-thickness cracks. Second, to represent evolving crack surface in 3D shell structures, a 3D parametric visibility condition algorithm is proposed, which re-constructs the local connectivity map for particles near the crack tip or crack surfaces, so that the meshfree interpolation field can represent physical material separation in the computational domain. Third, the constitutive update formulas in explicit time integration by different versions of Gurson models and the rate-dependent Johnson–Cook model are implemented for 3D computations. Finally, the performance of different Gurson-type models are investigated and compared with the experimental data of large scale in-plate tear process. Numerical simulations of crack propagation in stiffened plates and shells demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale plate/shell structures with engineering accuracy.  相似文献   

18.
A time domain spectral finite element is developed for improving the efficiency of numerical simulations of guided waves in laminated composite strips. The finite element relies on a new generalized laminate mechanics model formulated to represent symmetric and anti-symmetric Lamb waves. The laminate mechanics incorporate third-order polynomial terms for the approximation of axial and transverse displacement fields through the thickness and consider the displacements of the upper and lower surfaces as degrees of freedom. The laminate theory formulation is easily expanded to a high-order layerwise model. Based on the resultant governing equations of the laminate section, a new finite element with 8 nodal degrees of freedom is formulated; its nodes are collocated with Gauss–Lobatto–Legendre integration points in order to improve computational efficiency. Stiffness and mass matrices are assembled and the transient response is predicted using the explicit central differences time integration scheme. The transient response of Aluminum, Carbon Fiber Reinforced Polymer laminated and sandwich strips is investigated. Numerical results are validated against a semi-analytical solution. The accuracy and computational efficiency of the introduced element regarding the prediction of symmetric and anti-symmetric wave propagation is also quantified.  相似文献   

19.
Piezoelectric wafer active sensor embedded ultrasonics in beams and plates   总被引:3,自引:0,他引:3  
In this paper we present the results of a systematic theoretical and experimental investigation of the fundamental aspects of using piezoelectric wafe active sensors (PWASs) to achieve embedded ultrasonics in thin-gage beam and plate structures. This investigation opens the path for systematic application of PWASs forin situ health monitoring. After a comprehensive review of the literature, we present the principles of embedded PWASs and their interaction with the host structure. We give a brief review of the Lamb wave principles with emphasis on the understanding the particle motion wave speed/group velocity dispersion. Finite element modeling and experiments on thin-gage beam and plate specimens are presented and analyzed. The axial (S 0) and flexural (A 0) wave propagation patterns are simulated and experimentally measured. The group-velocity dispersion curves are validated. The use of the pulse-echo ultrasonic technique with embedded PWASs is illustrated using both finite element simulation and experiments. The importance of using high-frequency waves optimally tuned to the sensor-structure interaction is demonstrated. In conclusion, we discuss the extension of these results toin situ structural health monitoring using embedded ultrasonics.  相似文献   

20.
随着板状结构在石化、航空航天和电力等工业领域中的广泛应用,急需发展相应的无损检测技术,对其结构完整性进行定期评估,以保证结构的安全运行。基于空气耦合换能器的Lamb波技术,可以非接触快速地对板状结构进行扫描,在结构安全检测领域有广阔的应用前景。本文采用基于势函数法的空气耦合板状结构声传播模型,通过理论求解得到其Lamb波临界角随频厚积的变化规律。实验中采取空气耦合换能器激发和接收Lamb波,采用傅里叶变换和信号滤波技术识别S0和A0模式,并通过与理论结果比较进行确认。最后,分别采用S0和A0模式对板背部半通孔缺陷进行定位,结果显示该单侧非接触式超声无损检测方法可用于板状结构背部缺陷的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号