首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
New organometallic clusters with the MFe2(mu3-S)2 core (M = Mo or Fe) have been synthesized from inorganic [MoFe3S4] or [Fe4S4] clusters under high pressure CO. The reaction of (Cl4-cat)2Mo2Fe6S8(PR3)6[R = Et, (n)Pr] with high pressure CO produced the crystalline [MoFe2S2]4+ clusters, (Cl4-cat)Mo(O)Fe2S2(CO)(n)(PR3)6-n[n= 4, Et =I, (n)Pr =II; n = 5, Et =III] after flash column chromatography. The similar [MoFe2S2]4+ cluster, (Cl4-cat)2MoFe2S2(CO)2(depe)(2)(IV), also has been achieved by the reactions of (Cl4-cat)MoFe3S3(CO)6(PEt3)2 with depe by reductive decoupling of the cluster. For the [Fe3(mu3-S)2]4+ cluster, [Fe4S4(PcHex3)4](BPh4) was reacted with high pressure CO to produce a new Fe3S2(CO)7(PcHex)(2)(V) compound. These reactions generalized the preparation of organometallic compounds from inorganic clusters. All the compounds have been characterized by single crystal X-ray crystallography. A possible reaction pathway for the synthesis of the MFe2(mu3-S) clusters (M = Mo or Fe) has also been suggested.  相似文献   

2.
In the proton transfer reactions between [Fe 4Y 4Cl 4] (2-) (Y = S or Se) and [pyrH] (+) (pyr = pyrrolidine) in the presence of a variety of nucleophiles (L = I (-), Br (-), PhS (-), EtS (-) or ButNC), initial binding of the nucleophile can occur to generate [Fe 4Y 4Cl 4(L)] ( n- ). The subsequent rate of proton transfer depends markedly on the nature of L. Stopped-flow kinetic studies show that proton transfer from [pyrH] (+) to [Fe 4Y 4Cl 4] (2-) { (S) k 4 = (2.1 +/- 0.5) x 10 (4) dm (3) mol (-1) s (-1); (Se) k 4 = (8.0 +/- 0.5) x 10 (3) dm (3) mol (-1) s (-1)} is increased by prior binding of L = PhS (-) or Bu ( t )NC to form [Fe 4Y 4Cl 4(L)] (n-) ( (S) k 7 (L) approximately 1 x 10 (6) dm (3) mol (-1) s (-1)), but prior binding of L = I (-), Br (-), or EtS (-) to the clusters inhibits the rate of proton transfer {e.g. (S) k 7 (I) = (6.0 +/- 0.8) x 10 (2) dm (3) mol (-1) s (-1); (Se) k 7 (I) = (4.5 +/- 0.5) x 10 (2) dm (3) mol (-1) s (-1)}. This behavior is correlated with the bonding characteristics of L and the effect this has on bond length reorganization within the cluster upon proton transfer.  相似文献   

3.
Terminal thiolate ligands on the synthetic Fe-S-based clusters [Fe4S4(SR)4]2- (R = Et or SPh) or [{MoFe3S4(SPh)3}2(mu-SPh)3]3- are replaced by chloride in a reaction with PhCOCl to produce [Fe4S4Cl4]2- and [{MoFe3S4Cl3}2(mu-SPh)3]3-, respectively. Kinetic studies using stopped-flow spectrophotometry show that, in general, the mechanisms of these reactions in MeCN occur by two pathways. One pathway is independent of the concentration of PhCOCl and involves rate-limiting dissociation of the thiolate ligand. The free thiolate subsequently reacts with PhCOCl to produce PhCOSR and the Cl- which binds to the vacant site on the cluster. The second pathway exhibits a nonlinear dependence on the concentration of PhCOCl and involves initial, rapid binding of PhCOCl to the cluster followed by intramolecular thiolate ligand attack on the coordinated acid chloride. The intermediate in which PhCOCl is bound to the cluster has been detected spectrophotometrically. The ways in which the rates of the reactions between PhCOCl and Fe-S-based clusters are affected by changes of the terminal thiolate, the metal composition of the cluster core, and the protonation state of the cluster have been investigated and are compared with the effect these same changes have on the rates of nucleophilic substitution.  相似文献   

4.
Treatment of oxidized clusters [(Cl4cat)(MeCN)MoFe3S4Cl3]2- (1) and [(Meida)MoFe3S4Cl3]2- (2) with tertiary phosphines in the presence of NaBPh4 in acetonitrile results in chloride substitution at the iron sites and the formation of clusters with the reduced [MoFe3S4]2+ core. Thus, 1 is a precursor to [(Cl4cat)(MeCN)MoFe3S4(PR3)3] (R = But (3), Pri (4)) and [(Cl4cat)2(Et3P)2Mo2Fe6S8(PEt3)4] (5). Cluster 2 affords [[(Meida)MoFe3S4(PCy3)3]4Fe2(mu-Cl)L2]3+ (L = THF (6), MeCN (7)). The structures of 3-7 were established by X-ray analysis. Clusters 3 and 4 are single cubanes, centrosymmetric 5 (previously reported in a different space group: Demadis, K. D.; Campana, C. F.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 7832) is a double cubane with a rhomboidal Fe2S2 bridge, and 6 and 7 are tetracubanes. In the latter, four Meida oxygen atoms from different cubanes bind each of two central high-spin Fe(II) atoms in trans-Fe(mu-Cl)LO4 coordination. The topology of these clusters is not precedented. Zero-field M?ssbauer parameters for all clusters are reported. Isomer shift considerations suggest the formulation [Mo3+Fe2+2Fe3+S4] for reduced clusters. Voltammetry of 3 and 4 reveals four-member electron transfer series encompassing the oxidation levels [MoFe3S4]4+,3+,2+,+ in the potential interval + 1.0 to -1.3 V vs SCE in dichloromethane. Compared to the clusters with monoanionic ligands at the iron sites, phosphine ligation shifts redox potentials to more positive values. This effect arises from reduction of cluster negative charge and the tendency of phosphines to stabilize lower oxidation states. The synthesis of reduced clusters 4 from 1 and of [Fe4S4(PPri3)4]+ from [Fe4S4Cl4]2- is accompanied by the formation of Pri3PS, detected by 31P NMR, indicating that the phosphine is the reductant. This result implies a similar function of tertiary phosphines in the synthesis of 3 and 5-7. (Cl4cat = tetrachlorocatecholate(2-); Meida = N-methyliminodiacetate(2-).)  相似文献   

5.
Members of the cluster set [(Tp)2Mo2Fe6S8L4]z contain the core unit M2Fe6(mu3-S)6(mu4-S)2 in which two MoFe3S4 cubanes are coupled by two Fe-(mu4-S) interactions to form a centrosymmetric edge-bridged double cubane cluster. Some of these clusters are synthetic precursors to [(Tp)2Mo2Fe6S9L2]3-, which possess the same core topology as the P(N) cluster of nitrogenase. In this work, the existence of a three-member electron-transfer series of single cubanes [(Tp)MoFe3S4L3](z) (z = 3-, 2-, 1-) and a four-member series of double cubanes [(Tp)2Mo2Fe6S8L4]z (z = 4-, 3-, 2-, 1-) with L = F-, Cl-, N3, PhS- is demonstrated by electrochemical methods, cluster synthesis, and X-ray structure determinations. The potential of the [4-/3-] couple is extremely low (<-1.5 V vs SCE in acetonitrile) such that the 4- state cannot be maintained in solution under normal anaerobic conditions. The chloride double cubane redox series was examined in detail. The members [(Tp)2Mo2Fe6S8Cl4]4-,3-,2- were isolated and structurally characterized. The redox series includes the reversible steps [4-/3-] and [3-/2-]. Under oxidizing conditions, [(Tp)2Mo2Fe6S8Cl4]2- cleaves with the formation of single cubane [(Tp)MoFe3S4Cl3]1-. The quasireversible [2-/1-] couple is observed at more positive potentials than those of the single cubane redox step. Structure comparison of nine double cubanes suggests that significant dimensional changes pursuant to redox reactions are mainly confined to the Fe2(mu4-S)2 bridge rhomb. The synthesis and structure of [(Tp)2Mo2Fe6S9F2.H2O]3-, a new topological analogue of the P(N) cluster of nitrogenase, is described. (Tp = hydrotris(pyrazolyl)borate(1-)).  相似文献   

6.
Our explorations of the reactivity of Fe/Mo/S clusters of some relevance to the FeMoco nitrogenase have led to new double-fused cubane clusters with the Mo2Fe6S8 core as derivatives of the known (Cl4-cat)2Mo2Fe6S8(PPr3)6 (I) fused double cubane. The new clusters have been obtained by substitution reactions of the PPr3 ligands with Cl-, BH4-, and N3-. By careful control of the conditions of these reactions, the clusters [(Cl4-cat)(PPr3)MoFe3S4(BH4)2]2(Bu4N)4 (II), [(Cl4-cat)(PPr3)MoFe3S4(PPr3)(BH4)]2(Bu4N)2 (III), [(Cl4-cat)(PPr3)MoFe3S4(N3)2]2(Bu4N)4 (IV), [(Cl4-cat)(PPr3)MoFe3S4(PPr3)(N3)]2(Bu4N)2 (V), and [(Cl4-cat)(PPr3)MoFe3S4Cl2]2(Et4N)4 (VI) have been obtained and structurally characterized. A study of their electrochemistry shows that the reduction potentials for the derivatives of I are shifted to more positive values than those of I, suggesting a stabilization of the reduced clusters by the anionic ligands BH4- and N3-. Using 1H NMR spectroscopy, we have explored the lability of the BH4- ligand in II in coordinating solvents and its hydridic character, which is apparent in its reactivity toward proton sources such as MeOH or PhOH.  相似文献   

7.
A new aspect of reactivity of the cluster [Pd3(dppm)3(micro3-CO)]n+, ([Pd3]n+, n = 2, 1, 0) with the low-valent metal-metal-bonded Pd2(dppm)2Cl2 dimer (Pd2Cl2) was observed using electrochemical techniques. The direct reaction between [Pd3]2+ and Pd2Cl2 in THF at room temperature leads to the known [Pd3(dppm)3(micro3-CO)(Cl)]+ ([Pd3(Cl)]+) adduct and the monocationic species Pd2(dppm)2Cl+ (very likely as Pd2(dppm)2(Cl)(THF)+, [Pd2Cl]+) as unambiguously demonstrated by UV-vis and 31P NMR spectroscopy. In this case, [Pd3]2+ acts as a strong Lewis acid toward the labile Cl- ion, which weakly dissociates from Pd2Cl2 (i.e., dissociative mechanism). Host-guest interactions between [Pd3]2+ and Pd2Cl2 seem unlikely on the basis of computer modeling because of the strong screening of the Pd-Cl fragment by the Ph-dppm groups in Pd2Cl2. The electrogenerated clusters [Pd3]+ and [Pd3]0 also react with Pd2Cl2 to unexpectedly form the same oxidized adduct, [Pd3(Cl)]+, despite the known very low affinity of [Pd3]+ and [Pd3]0 toward Cl- ions. The reduced biproduct in this case is the highly reactive zerovalent species "Pd2(dppm)2" or "Pd(dppm)" as demonstrated by quenching with CDCl3 (forming the well-known complex Pd(dppm)Cl2) or in presence of dppm (forming the known Pd2(dppm)3 d10-d10 dimer). To bring these halide-electron exchange reactions to completion for [Pd3]+ and [Pd3]0, 0.5 and 1.0 equiv of Pd2Cl2 are necessary, respectively, accounting perfectly for the number of exchanged electrons. The presence of a partial dissociation of Pd2Cl2 into the Cl- ion and the monocation [Pd2Cl]+, which is easier to reduce than Pd2Cl2, is suggested to explain the overall electrochemical results. It is possible to regulate the nature of the species formed from Pd2Cl2 by changing the state of charge of the title cluster.  相似文献   

8.
The reaction of aqueous [W3S7(C2O4)3](2-) with Ln(3+) and Th(4+) in a 1:1 molar ratio leads to oxalate-bridged heteropolynuclear molecular complexes and coordination polymers. La(3+) and Ce(3+) give a layered structure with big (about 1.8 nm) honeycomb pores which are filled with water molecules and lanthanide ions, in {[Ln(H2O)6]3[W3S7(C2O4)3]4}Br x xH2O (Ia and Ib). The smaller Pr(3+), Nd(3+), Sm(3+), Eu(3+), and Gd(3+) ions give discrete nanomolecules [(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)] (with a separation of about 3.2 nm between the most distant parts of the molecule), which are further united into zigzag chains by specific S2...Br- contacts to achieve the overall stoichiometry K[(W3S7(C2O4)3Ln(H2O)5)2(mu-C2O4)]Br.xH2O (IIa-IId). Th(4+) gives K2[(W3S7(C2O4)3)4Th2(OH)2(H2O)10] x 14.33H2O (III) with a nanosized discrete anion (with a separation of about 2.7 nm between the most distant parts of the molecule), in which two thorium atoms are bound via two hydroxide groups into the Th2(OH)2(6+) unit, and each Th is further coordinated by five water molecules and two monodentate [W3S7(C2O4)](2-) cluster ligands. All compounds were characterized by X-ray structure analysis and IR spectroscopy. Magnetic susceptibility measurements in the temperature range of 2-300 K show weak antiferromagnetic interactions between two lanthanides atoms for compounds IIa, IIb, and IId. The thermal decomposition of Ia, Ib, and IIb was studied by thermogravimetry.  相似文献   

9.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

10.
The reactivity of Fe/S and Fe/Mo/S clusters, similar or analogous to those occurring in biological systems, with thiophilic metal ions has not been explored. In this Communication, we demonstrate that synthesis of heteropolynuclear clusters with different coordination geometries for different metals at different sites is possible by metal substitution or by metal addition reactions. The two clusters we report herein ([(Cl4-cat)2Mo2Cu5Fe4S9(PnPr3)7(SPnPr3)2]PF6 and [(Cl4-cat)2Mo2Cu6Fe4S10(PnPr3)8]) contain Fe, Mo, and Cu, which display pseudotetrahedral, pseudooctahedral, and pseudotrigonal geometries, respectively. The synthesis of these clusters is achieved by the addition of appropriate amounts of [Cu(CH3CN)4]+ to [(Cl4-cat)2Mo2Fe8(PnPr3)6]. The formation of the different products is temperature- and solvent-dependent. The Cu(I) units incorporated into the metal cluster framework, either bind to available lone pairs of the already bridging S ligands or displace the less thiophilic Fe atoms. Among the essential features of these new molecules are recognizable Fe/S fragments including an Fe6S9 core in the first cluster and the pentlandite Fe4Cu4S6 core in the second cluster.  相似文献   

11.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

12.
The kinetics of the reactions between [FeCl4]- and an excess of PhS- have been studied using stopped-flow spectophotometry. The associated absorbance-time curves can be fitted to two exponentials, and these first and second phases correspond to the formation of [FeCl3(SPh)]- and [FeCl2(SPh)2]-, respectively. It seems likely that the steps involving formation of [FeCl(SPh)3]- and [Fe(SPh)4]- are associated with much smaller changes in absorbance and so are not detected. The kinetics of the first phase exhibit a non-linear dependence on the concentration of PhS- indicating an associative mechanism in which PhS- rapidly binds to [FeCl4]- to form [FeCl4(SPh)]2- prior to rate-limiting dissociation of chloride and formation of [FeCl3(SPh)]-. The kinetics indicate that at high concentrations of PhS-, the five-coordinate intermediate attains stoichiometric concentrations. This is confirmed by the spectroscopic changes. The second phase shows analogous kinetics. The kinetics of the reactions between [FeCl4]- and an excess of PhSH have also been studied. For the first phase the reaction occurs at a rate independent of the concentration of PhSH, consistent with an associative mechanism in which the solvent (MeCN) is the nucleophile to form [FeCl3(NCMe)]. Subsequent rapid replacement of the coordinated solvent by PhSH yields [FeCl3(SHPh)]. The kinetics of the second phase of the reaction with PhSH exhibits a non-linear dependence on the concentration of PhSH, analogous to the kinetics observed with PhS- and consistent with an associative mechanism. The cations [NHEt3]+, [NH2Et2]+ and [lutH]+ (lut = 2,6-dimethylpyridine) form ion pairs with [FeCl4]- which undergo substitution more rapidly than free [FeCl4]-.  相似文献   

13.
The reactions of [M3(CO)12] (M=Ru or Fe) with 1,2 bis[(diphenylphosphino)methyl]benzene diselenide (dpmbSe2) in hot toluene afford a variety of phosphine-substituted selenido carbonyl clusters. They belong to the following three families: (i) 50-electron clusters with a M3Se2 core (2, 3, 5-7), (ii) 48-electron clusters with a M3Se core (1, 8), (iii) 34-electron clusters with a M2Se2 core (4). All these species derive from the P=Se bond cleavage. Cluster 1, which contains a hydrido, a phosphido, and a carbene ligand, is produced by multiple fragmentation of the diphosphine. This fragmentation appears related to the presence of the selenido ligand on the cluster, as the reaction of [Ru3(CO)12] with dpmb (not selenized) produces only carbonyl substitution by the phosphine to give [Ru3(CO)10(mu-dpmb)] (9). All the clusters synthesized have been characterized by spectroscopic techniques, and in some cases fluxional behavior has been detected in solution by NMR analysis. The structures of 1, 2, and 7-9 have been determined by X-ray diffraction methods.  相似文献   

14.
By reacting 1-aminoethylammonium (H2NCH2CH2NH3+ = enH+) salts of [Sn2E6]4- anions (E = S, Se), [enH]4[Sn2S6] (1) and [enH]4[Sn2Se6] x en (2), with FeCl2/LiCp, three novel (partly) oxidized, Cp* ligated iron chalcogenide clusters were synthesized. Two of them, [(CpFe)3(mu3-S)2] (3) and [(Cp*Fe)3(mu3-Se)2] (4), contain formally 47 valence electrons. [(Cp*Fe)3(SnCl3)(mu3-Se)4] x DME (5) represents the first known mixed metal Fe/Sn/Se heterocubane type cluster. Compounds 3-5 were structurally characterized by single-crystal X-ray diffraction, and the odd valence electron number of the [Fe3E2] clusters (E = S, Se) was confirmed by density functional (DFT) investigations, mass spectrometry, cyclic voltammetry and a susceptibility measurement of 3.  相似文献   

15.
The all-ferrous [Fe4S4](0) state has been demonstrated in the fully reduced Fe protein of the Azotobacter vinelandii nitrogenase complex. We seek synthetic analogues of this state more tractable than the recently prepared but highly unstable cluster [Fe4S4(CN)4](4-) (Scott, Berlinguette, Holm, and Zhou, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9741). The N-heterocyclic carbene 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (Pr(i)2NHCMe2) has been found to stabilize the fully reduced clusters [Fe8S8(Pr(i)2NHCMe2)6] (4) and [Fe4S4(Pr(i)2NHCMe2)4] (5), which are prepared by cluster assembly or phosphine substitution of FenSn (n = 8, 16) clusters. Cluster 4 is also obtained by reaction of the carbene with all-ferrous [Fe7S6(PEt3)5Cl2] (3) and cluster 5 by carbene cleavage of 4. Detailed structures of 3 (monocapped prismatic), 4, and 5 are described; the latter two are the first iron-sulfur clusters with Fe-C sigma bonds. Cluster 4 possesses the [Fe8(mu3-S) 6(mu4-S)2] edge-bridged double cubane structure and 5 the cubane-type [Fe4(mu3-S)4] stereochemistry. The all-ferrous formulations of the clusters are confirmed by X-ray structure parameters and (57)Fe isomer shifts. Both clusters are stable under conventional aprotic anaerobic conditions, enabling further study of reactivity. The collective properties of 5 indicate that it is a meaningful synthetic analogue of the core of the fully reduced protein-bound cluster.  相似文献   

16.
Under solvothermal conditions the unprecedented nonanuclear Fe(III) aggregate [Fe9(mu3-O)4(mu-OH)4(hpdta)4]5- is formed through the formal encapsulation of [Fe(H2O)6]3+ by four [Fe2(hpdta)(H2O)2]+ units: the aggregates have ground state spins of S= 13/2 while the observed hysteresis below 1.8 K results from inter-cluster antiferromagnetic coupling.  相似文献   

17.
Kinetic studies on the substitution reaction between [Fe(4)S(4)Cl(4)](2-) and Bu(t)NC or Et(2)NCS(2)(-) are reported. The binding of small molecules and ions to Fe-S clusters is a fundamental step in substitution reactions but can be difficult to follow directly because these reactions are rapid and often associated with small spectroscopic changes. A novel kinetic method is reported which allows the time course of molecule and ion binding to Fe-S clusters to be followed by monitoring the lability of the cluster. Using a stopped-flow, sequential-mix apparatus, [Fe(4)S(4)Cl(4)](2-) and L (L = Et(2)NCS(2)(-) or Bu(t)NC) are rapidly mixed, and after a known time (delta) the resulting solution is mixed with a solution of PhS(-). The thiolate substitutes for the chloro ligands on the cluster, in a reaction which is easy to follow because of the large change in the visible absorption spectrum. The rate of this substitution is extremely sensitive to whether L is bound to the cluster or not. By correlation of delta with the rate of the reaction with PhS(-), the time course of the reaction between [Fe(4)S(4)Cl(4)](2-) and L can be mapped out. In studies where L = Bu(t)NC this technique has allowed the detection of an intermediate ([Fe(4)S(4)Cl(4)(CNBu(t))](2-)) which cannot be detected spectrophotometrically. In further studies, the substitution reactions of [Fe(4)S(4)Cl(4)](2-) with PhS(-), Et(2)NCS(2)(-), or Bu(t)NC are all perturbed by the addition of Cl(-). In all cases a common pathway for substitution is evident, but with Et(2)NCS(2)(-) an additional, slower pathway becomes apparent under conditions where the common pathway is completely inhibited by Cl(-).  相似文献   

18.
The triangular cluster [Mo3Se4(H2O)9]4+ reacts with Cu turnings to give a new heterometallic cuboidal cluster [Mo3CuSe4(H2O)10]4+(purple; UV/Vis lambda(epsilon): 352(3907), 509(2613)). The reaction of [Mo3Se4(H2O)9]4+ with CuCl afforded the 5+ cube [Mo3CuSe4(H2O)10]5+(red; UV/Vis lambda(epsilon): 356(5406), 500(3477)). In contrast, [W3Se4(H2O)9]4+ both with Cu and CuCl gives the 5+ cube, [W3CuSe4(H2O)10]5+(yellow-green; UV/Vis lambda(epsilon): 312(5327), 419(3256) and 628(680)). Cyclic voltammetry of [M3CuQ4(H2O)10]5+ in 2 M HCl (M = Mo, W; Q = S, Se) shows a reversible one-electron reduction wave for the Mo clusters, but no reduction occurs for the W clusters prior to H+ reduction. In HCl solutions, Cl is coordinated to the Cu site of the clusters, alongside some less extensive coordination to Mo and W, and for [W3(CuCl)S4(H2O)6Cl3]+, isolated as the supramolecular adduct with cucurbit[6]uril, [W3(CuCl)S4(H2O)6Cl3]2Cl2 x C36H36N24O12 x 12H2O, the crystal structure was determined (Cu-W 2.856(4) angstroms, W-W 2.7432(15) angstroms, Cu-Cl 2.167(13) angstroms).  相似文献   

19.
20.
Hydrothermal reactions between incomplete cuboidal cluster aqua complexes [M3Q4(H2O)9]4+ and M(CO)6 (M = Mo, W; Q = S, Se) offer easy access to the corresponding cuboidal clusters M4Q4. The complete series of homometal and mixed Mo/W clusters [Mo(x)W4-xQ4(H2O)12]n+ (x = 0-4, n = 4-6) has been prepared. Upon oxidation of the mixed-metal clusters, it is the W atom which is lost, allowing selective preparation of new trinuclear clusters [Mo2WSe4(H2O)9]4+ and [MoW2Se4(H2O)9]4+. The aqua complexes were converted by ligand exchange reactions into dithiophosphato and thiocyanato complexes, and crystal structures of [W4S4((EtO)2PS2)6], [MoW3S4((EtO)2PS2)6], [Mo4Se4((EtO)2PS2)6], [W4Se4((i-PrO)2PS2)6], and (NH4)6[W4Se4(NCS)12]-4H20 were determined. Cyclic voltammetry was performed on [Mo(x)W4-xCO4(H2O)12]n+, showing reversible redox waves 6+/5+ and 5+/4+. The lower oxidation states are more difficult to access as the number of W atoms increases. The [Mo2WSe4(H2O)9]4+ and [MoW2Se4(H2O)9]4+ species were derivatized into [Mo2WSe4(acac)3(py)3]+ and [MoW2Se4(acac)3(py)3]+, which were also studied by CV. When appropriate, the products were also characterized by FAB-MS and NMR (31P, 1H) data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号