首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers is proposed. It is especially useful for computation of laminar-turbulent transition and turbulence starting from small-amplitude disturbances. The laminar stage, up to the beginning of the breakdown in laminar-turbulent transition, is computed by parabolized stability equations (PSE). The direct numerical simulation (DNS) method is used to compute the transition process and turbulent flow, for which the inflow condition is provided by using the disturbances obtained by PSE method up to that stage. In the two test cases incfuding a subsonic and a supersonic boundary layer, the transition locations and the turbulent flow obtained with this method agree well with those obtained by using only DNS method for the whole process. The computational cost of the proposed method is much less than using only DNS method.  相似文献   

2.
The spatial evolution of 2-D disturbances in supersonic sharp cone boundary layers was investigated by direct numerical simulation (DNS) in high order compact difference scheme. The results suggested that, although the normal velocity in the sharp cone boundary layer was not small, the evolution of amplitude and phase for small amplitude disturbances would be well in accordance with the results obtained by the linear stability theory (LST) which supposes the flow was parallel. The evolution of some finite amplitude disturbances was also investigated, and the characteristic of the evolution was shown. Shocklets were also found when the amplitude of disturbances increased over some value.  相似文献   

3.
A new idea of using the parabolized stability equation (PSE) method to predict laminar-turbulent transition is proposed. It is tested in the prediction of the location of transition for compressible boundary layers on flat plates, and the results are compared with those obtained by direct numerical simulations (DNS). The agreement is satisfactory, and the reason for this is that the PSE method faithfully reproduces the mechanism leading to the breakdown process in laminar-turbulent transition, i. e., the modification of mean flow profile leads to a remarkable change in its stability characteristics.  相似文献   

4.
利用可压缩线性稳定性理论研究了超声速混合层考虑壁面影响流动时的失稳特性. 基本流场选取了具有不同速度特征的2 股均匀来流,进入存在上下壁面的流道中. 混合层与边界层的距离为1~3 个边界层厚度,其中壁面取为绝热壁. 分析了该流动在超声速情况下的稳定性特征,同时还讨论了不同波角下的三维扰动波的演化特点,并与二维扰动波进行了比较和分析. 研究结果表明,在此流动情况下,边界层流动和混合层流动的稳定性特征同时存在,并互有影响,其流动稳定性特征既有别于单纯的平板边界层,也有别于单纯的平面混合层,呈现出了新的稳定性特征.  相似文献   

5.
The parabolized stability equation (PSE) method has been proven to be a useful and convenient tool for the investigation of the stability and transition problems of boundary layers. However, in its original formulation, for nonlinear problems, the complex wave number of each Fourier mode is determined by the so-called phase-locked rule, which results in non-self-consistency in the wave numbers. In this paper, a modification is proposed to make it self-consistent. The main idea is that, instead of allowing wave numbers to be complex, all wave numbers are kept real, and the growth or decay of each mode is simply manifested in the growth or decay of the modulus of its shape function. The validity of the new formulation is illustrated by comparing the results with those from the corresponding direct numerical simulation (DNS) as applied to a problem of compressible boundary layer with Mach number 6.  相似文献   

6.
A highly accurate algorithm for the direct numerical simulation (DNS) of spatially evolving high-speed boundary-layer flows is described in detail and is carefully validated. To represent the evolution of instability waves faithfully, the fully explicit scheme relies on non-dissipative high-order compact-difference and spectral collocation methods. Several physical, mathematical, and practical issues relevant to the simulation of high-speed transitional flows are discussed. In particular, careful attention is paid to the implementation of inflow, outflow, and far-field boundary conditions. Four validation cases are presented, in which comparisons are made between DNS results and results obtained from either compressible linear stability theory or from the parabolized stability equation (PSE) method, the latter of which is valid for nonparallel flows and moderately nonlinear disturbance amplitudes. The first three test cases consider the propagation of two-dimensional second-mode disturbances in Mach 4.5 flat-plate boundary-layer flows. The final test case considers the evolution of a pair of oblique second-mode disturbances in a Mach 6.8 flow along a sharp cone. The agreement between the fundamentally different PSE and DNS approaches is remarkable for the test cases presented.  相似文献   

7.
For direct numerical simulation (DNS) of turbulent boundary layers, gen- eration of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods.  相似文献   

8.
Parabolized stability equations (PSE) approach is used to investigate prob-lems of secondary instability in supersonic boundary layers. The results show that the mechanism of secondary instability does work, whether the 2-D fundamental disturbance is of the first mode or second mode T-S wave. The variation of the growth rates of the 3-D sub-harmonic wave against its span-wise wave number and the amplitude of the 2-D fundamental wave is found to be similar to those found in incompressible boundary layers. But even as the amplitude of the 2-D wave is as large as the order 2%, the maximum growth rate of the 3-D sub-harmonic is still much smaller than the growth rate of the most unstable second mode 2-D T-S wave. Consequently, secondary instability is unlikely the main cause leading to transition in supersonic boundary layers.  相似文献   

9.
超声速平面剪切层声辐射涡模态数值分析   总被引:6,自引:0,他引:6  
沈清  王强  庄逢甘 《力学学报》2007,39(1):7-14
对Mc = 1.2二维超声速空间发展平面自由剪切层, 进行了扰动模态及流动结构的数值分析. 采用时空三阶改进MacCormack格式, 差分求解可压缩扰动Navier-Stokes方程, 直接数值模拟入口不同基频谐波扰动的非线性演化特征. 采用空间线性稳定性理论证明, 计算所促发的扰动波是声辐射涡模态. 扰动参数及特征函数分析显示, 声辐射涡模态是弱色散的快/慢两种外部模态, 在扰动对流Mach数为超声速一侧呈膨胀/压缩状辐射. 单频受迫扰动可无相差地促发多模态混合扰动波, 而在自然扰动条件下, 剪切层的稳定性受慢模态主导.  相似文献   

10.
The phenomenon of laminar-turbulent transition exists universally in nature and various engineering practice.The prediction of transition position is one of crucial theories and practical problems in fluid mechanics due to the different characteristics of laminar flow and turbulent flow.Two types of disturbances are imposed at the entrance,i.e.,identical amplitude and wavepacket disturbances,along the spanwise direction in the incompressible boundary layers.The disturbances of identical amplitude are consisted of one two-dimensional(2D) wave and two three-dimensional(3D) waves.The parabolized stability equation(PSE) is used to research the evolution of disturbances and to predict the transition position.The results are compared with those obtained by the numerical simulation.The results show that the PSE method can investigate the evolution of disturbances and predict the transition position.At the same time,the calculation speed is much faster than that of the numerical simulation.  相似文献   

11.
Stability of compressible three-dimensional boundary layers on a swept wing model is studied within the framework of the linear theory. The analysis based on the approximation of local self-similarity of the mean flow was performed within the Falkner-Skan-Cooke solution extended to compressible flows. The calculated characteristics of stability for a subsonic boundary layer are found to agree well with the measured results. In the case of a supersonic boundary layer, the results calculated for a Mach number M = 2 are also in good agreement with the measured spanwise scales of nonstationary vortices of the secondary flow. The calculated growth rates of disturbances, however, are substantially different from the measured values. This difference can be attributed to a high initial amplitude of disturbances generated in the experiment, which does not allow the linear stability theory to be applied. The evolution of natural disturbances with moderate amplitudes is fairly well predicted by the theory. The effect of compressibility on crossflow instability modes is demonstrated to be insignificant. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 2, pp. 3–14, March–April, 2008.  相似文献   

12.
超声速边界层/混合层组合流动的稳定性分析   总被引:1,自引:0,他引:1  
利用可压缩线性稳定性理论研究了超声速混合层考虑壁面影响流动时的失稳特性. 基本流场选取了具有不同速度特征的2 股均匀来流,进入存在上下壁面的流道中. 混合层与边界层的距离为1~3 个边界层厚度,其中壁面取为绝热壁. 分析了该流动在超声速情况下的稳定性特征,同时还讨论了不同波角下的三维扰动波的演化特点,并与二维扰动波进行了比较和分析. 研究结果表明,在此流动情况下,边界层流动和混合层流动的稳定性特征同时存在,并互有影响,其流动稳定性特征既有别于单纯的平板边界层,也有别于单纯的平面混合层,呈现出了新的稳定性特征.   相似文献   

13.
A numerical algorithm and code are developed and applied to direct numerical simulation (DNS) of unsteady two-dimensional flow fields relevant to stability of the hypersonic boundary layer. An implicit second-order finite-volume technique is used for solving the compressible Navier–Stokes equations. Numerical simulation of disturbances generated by a periodic suction-blowing on a flat plate is performed at free-stream Mach number 6. For small forcing amplitudes, the second-mode growth rates predicted by DNS agree well with the growth rates resulted from the linear stability theory (LST) including nonparallel effects. This shows that numerical method allows for simulation of unstable processes despite its dissipative features. Calculations at large forcing amplitudes illustrate nonlinear dynamics of the disturbance flow field. DNS predicts a nonlinear saturation of fundamental harmonic and rapid growth of higher harmonics. These results are consistent with the experimental data of Stetson and Kimmel obtained on a sharp cone at the free-stream Mach number 8.  相似文献   

14.
By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .  相似文献   

15.
The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering the non-parallelism effect, the parabolized stability equation (PSE) method lacks local characteristic of stability analysis. In this paper, a local stability analysis method considering non-parallelism is proposed, termed as EPSE since it may be considered as an expansion of the PSE method. The EPSE considers variation of the shape function in the streamwise direction. Its local characteristic is convenient for stability analysis. This paper uses the EPSE in a strong non-parallel flow and mode exchange problem. The results agree well with the PSE and the direct numerical simulation (DNS). In addition, it is found that the growth rate is related to the normalized method in the non-parallel flow. Different results can be obtained using different normalized methods. Therefore, the normalized method must be consistent.  相似文献   

16.
On the basis of a numerical solution of the two-dimensional Navier-Stokes equations, the stability and the receptivity of a supersonic (M = 6) boundary layer on a flat plate with a passive porous coating partially absorbing flow disturbances is studied. The results of direct numerical simulation are in good agreement with the data of the linear stability theory. The studies confirm the possibility of effectively stabilizing the second mode of the supersonic boundary layer using porous coatings.  相似文献   

17.
超音速混合层稳定性分析及增强混合的研究   总被引:1,自引:2,他引:1  
罗纪生  吕祥翠 《力学学报》2004,36(2):202-207
利用流动稳定性提高超音速混合层的混合效率,对于提高超音速流的高效混合是一个有效途径。研究结果表明,有展向曲率的三维混合层中,三维扰动的增长率很大,且法向的掺混能力也较强,可以有效地增强混合。对于高马赫数来流的超音速混合层,这一特性依然存在,这将有利于提高高超音速混合层的混合能力。  相似文献   

18.
An input/output framework is used to analyze the sensitivity of two- and three-dimensional disturbances in a compressible boundary layer for changes in wall and momentum forcing. The sensitivity is defined as the gradient of the kinetic disturbance energy at a given downstream position with respect to the forcing. The gradients are derived using the parabolized stability equations (PSE) and their adjoint (APSE). The adjoint equations are derived in a consistent way for a quasi-two-dimensional compressible flow in an orthogonal curvilinear coordinate system. The input/output framework provides a basis for optimal control studies. Analysis of two-dimensional boundary layers for Mach numbers between 0 and 1.2 show that wall and momentum forcing close to branch I of the neutral stability curve give the maximum magnitude of the gradient. Forcing at the wall gives the largest magnitude using the wall normal velocity component. In case of incompressible flow, the two-dimensional disturbances are the most sensitive ones to wall inhomogeneity. For compressible flow, the three-dimensional disturbances are the most sensitive ones. Further, it is shown that momentum forcing is most effectively done in the vicinity of the critical layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In order to extend the e~N method to general three-dimensional boundary layers, the conservation law of the imaginary parts for the wave parameters with a fixed wave vector is deduced. The compatibility relationship(CR) and the general theory of ray tracing(RT), which have been extensively used in conservative systems, are applied to a general three-dimensional boundary layer belonging to non-conservative systems. Two kinds of e~N methods, i.e., the e~N -CR method and the e~N -RT method, are established.Both the two kinds of methods can be used to predict the evolutions of the spanwise wavenumber and the amplitude of the disturbances in general three-dimensional boundary layers. The reliability of the proposed methods is verified and validated by performing a direct numerical simulation(DNS) in a hypersonic general three-dimensional boundary layer over an aircraft model. The results are also compared with those obtained by other e~N methods, indicating that the proposed methods have great potential applications in improving the transition prediction accuracy in general three-dimensional boundary layers.  相似文献   

20.
Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed.Then,two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field,and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed.It was found that the change of the stability characteristics of the mean flow profile was the key issue.Furthermore,the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号