首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
特征分析表明 :对原始扰动量的抛物化稳定性方程组 (PSE) ,它在亚、超音速区分别具有椭圆和抛物特性 ,给出PSE特征对马赫数的依赖关系 ,阐明PSE仅把信息对流 扩散传播特性抛物化 ,而保留了信息对流 扰动传播特性 ,因此PSE应称为扩散抛物化稳定性方程 (DPSE)  相似文献   

2.
Parabolized stability equations (PSE) were used to study the evolution of disturbances in compressible boundary layers.The results were compared with those ob- tained by direct numerical simulations (DNS),to check if the results from PSE method were reliable or not.The results of comparison showed that no matter for subsonic or supersonic boundary layers,results from both the PSE and DNS method agreed with each other reasonably well,and the agreement between temperatures was better than those between velocities.In addition,linear PSE was used to calculate the neutral curve for small amplitude disturbances in a supersonic boundary layer.Compared with those obtained by linear stability theory (LST),the situation was similar to those for incom- pressible boundary layer.  相似文献   

3.
The stability of an elastic plate in supersonic gas flow is investigated using asymptotic methods and taking the boundary layer formed on the plate surface into account. It is shown that the effect of the boundary layer can be of two types depending on its profile. In the case of generalized convex profiles (characteristic of accelerated flow) supersonic and subsonic plate oscillations are stabilized and destabilized, respectively. In the case of profiles with a generalized inflection point located in the subsonic part of the layer (characteristic of homogeneous and decelerated flows) supersonic perturbations are destabilized in the thin boundary layer and stabilized when the layer is fairly thick; subsonic perturbations are damped.  相似文献   

4.
We analyze the propagation of nonlinear waves in homogenized periodic nonlinear hexagonal networks, considering successively 1D and 2D situations. Wave analysis is performed on the basis of the construction of the effective strain energy density of periodic hexagonal lattices in the nonlinear regime. The obtained second order gradient nonlinear continuum has two propagation modes: an evanescent subsonic mode that disappears after a certain wavenumber and a supersonic mode characterized by an increase of the frequency with the wavenumber. For a weak nonlinearity, a supersonic mode occurs and the dispersion curves lie above the linear dispersion curve (vp =vp0). For a higher nonlinearity, the wave changes from a supersonic to an evanescent subsonic mode at s=0.7 and the dispersion curves drops below the linear case and vanish for certain values of the wavenumber. An important decrease in the frequency occurs for both subsonic and supersonic modes when the lattice becomes auxetic, and the longitudinal and shear modes become very close to each other. The influence of the lattice geometrical parameters of the lattice on the dispersion relations is analyzed.  相似文献   

5.
The development of disturbances in a hypersonic boundary layer on a cooled surface is investigated in the case in which the characteristic velocity of disturbance propagation is small but greater than the flow velocity in the wall region of the three-layer disturbed zone with interaction. The nonlinear boundary value problem formulated involves a single similarity parameter that characterizes the contribution made by the main, on average either subsonic or supersonic, region of the boundary layer to the generation of the pressure disturbance. In the linear approximation, an analytical solution and an algebraic dispersion equation are derived. It is shown that only waves exponential in time and in the streamwise coordinate can propagate downstream when themain region of the undisturbed boundary layer is subsonic on average.  相似文献   

6.
Periodic buckled beams possess a geometrically nonlinear, load–deformation relationship and intrinsic length scales such that stable, nonlinear waves are possible. Modeling buckled beams as a chain of masses and nonlinear springs which account for transverse and coupling effects, homogenization of the discretized system leads to the Boussinesq equation. Since the sign of the dispersive and nonlinear terms depends on the level of buckling and support type (guided or pinned), compressive supersonic, rarefaction supersonic, compressive subsonic and rarefaction subsonic solitary waves are predicted, and their existence is validated using finite element simulations of the structure. Large dynamic deformations, which cannot be approximated with a polynomial of degree two, lead to strongly nonlinear equations for which closed-form solutions are proposed.  相似文献   

7.
In this paper, both structural and dynamical stabilities of steady transonic shock solutions for one-dimensional Euler–Poisson systems are investigated. First, a steady transonic shock solution with a supersonic background charge is shown to be structurally stable with respect to small perturbations of the background charge, provided that the electric field is positive at the shock location. Second, any steady transonic shock solution with a supersonic background charge is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data, provided the electric field is not too negative at the shock location. The proof of the first stability result relies on a monotonicity argument for the shock position and the downstream density, and on a stability analysis for subsonic and supersonic solutions. The dynamical stability of the steady transonic shock for the Euler–Poisson equations can be transformed to the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions. The analysis for the associated linearized problem plays an essential role.  相似文献   

8.
The mechanisms of development of slow time-dependent disturbances in the wall region of a hypersonic boundary layer are established and a diagram of the disturbed flow patterns is plotted; the corresponding nonlinear boundary value problem is formulated for each of these regimes. It is shown that the main factors that form the disturbed flow are the gas enthalpy near the body surface, the local viscous-inviscid interaction level, and the type, either subsonic or supersonic, of the boundary layer as a whole. Numerical and analytical solutions are obtained in the linear approximation. It is established that enhancement of the local viscous-inviscid interaction or an increased role for the main supersonic region of the boundary layer makes the disturbed flow by and large “supersonic”: the upstream propagation of the disturbances becomes weaker, while their downstream growth is amplified. Contrariwise, local viscous-inviscid interaction attenuation or an increased role for the main subsonic region of the boundary layer has the opposite effect. Surface cooling favors an increased effect of the main region of the boundary layer while heating favors an increased wall region effect. It is also found that in the regimes considered disturbances travel from the turbulent flow region downstream of the disturbed region under consideration counter to the oncoming flow, which may be of considerable significance in constructing the nonlinear stability theory.  相似文献   

9.
A new three-dimensional (3-D) viscous aeroelastic solver for nonlinear panel flutter is developed in this paper. A well-validated full Navier–Stokes code is coupled with a finite-difference procedure for the von Karman plate equations. A subiteration strategy is employed to eliminate lagging errors between the fluid and structural solvers. This approach eliminates the need for the development of a specialized, tightly coupled algorithm for the fluid/structure interaction problem. The new computational scheme is applied to the solution of inviscid two-dimensional panel flutter problems for subsonic and supersonic Mach numbers. Supersonic results are shown to be consistent with the work of previous researchers. Multiple solutions at subsonic Mach numbers are discussed. Viscous effects are shown to raise the flutter dynamic pressure for the supersonic case. For the subsonic viscous case, a different type of flutter behavior occurs for the downward deflected solution with oscillations occurring about a mean deflected position of the panel. This flutter phenomenon results from a true fluid/structure interaction between the flexible panel and the viscous flow above the surface. Initial computations have also been performed for inviscid, 3-D panel flutter for both supersonic and subsonic Mach numbers.  相似文献   

10.
A solution of the problem of supersonic flow past a wavy wall with an adjacent subsonic layer is obtained. The solution is a generalization of the well-known solutions [1] of the linear problem of purely subsonic and purely supersonic flow past a wavy wall and goes over into these solutions in the limiting cases of infinite and zero wall-layer thickness, respectively. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 97–103, January–February, 1997.  相似文献   

11.
The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering the non-parallelism effect, the parabolized stability equation (PSE) method lacks local characteristic of stability analysis. In this paper, a local stability analysis method considering non-parallelism is proposed, termed as EPSE since it may be considered as an expansion of the PSE method. The EPSE considers variation of the shape function in the streamwise direction. Its local characteristic is convenient for stability analysis. This paper uses the EPSE in a strong non-parallel flow and mode exchange problem. The results agree well with the PSE and the direct numerical simulation (DNS). In addition, it is found that the growth rate is related to the normalized method in the non-parallel flow. Different results can be obtained using different normalized methods. Therefore, the normalized method must be consistent.  相似文献   

12.
We study gas flow in vibrational nonequilibrium. The model is a 4Ǹ nonlinear hyperbolic system with relaxation. Under physical assumptions, properties of thermodynamic variables relevant to stability are obtained, global existence for Cauchy problems with smooth and small data is established, and large time behavior is studied in the pointwise sense. We formulate the fundamental solution in a systematic way for a general linear system with relaxation. The fundamental solution provides insights to the behavior of the nonlinear system, and is crucial to obtain our pointwise asymptotic picture for the nonequilibrium flow. We also clarify in a general setting the relation between subcharacteristic conditions and a dissipative criterion that was originally proposed for hyperbolic-parabolic systems and has now proved to be important also for hyperbolic systems with relaxation.  相似文献   

13.
A nonlinear time-dependent model of the development of longwave perturbations in a hypersonic boundary layer flow in the neighborhood of a cooled surface is constructed. The pressure in the flow is assumed to be induced the combined variation of the thicknesses of the near-wall and main parts of the boundary layer. Numerical and analytic solutions are obtained in the linear approximation. It is shown that if the main part of the boundary layer is subsonic as a whole, its action reduces the perturbation damping upstream and the perturbation growth downstream, while a supersonic, as a whole, main part of the boundary layer creates the opposite effects. An analysis of the solutions obtained makes it possible to conclude that the asymptotic model proposed can describe the three-dimensional instability of the Tollmien-Schlichting waves.  相似文献   

14.
One of the possible methods is considered for profiling short plane nozzles for aerodynamic tubes. The nozzle has a straight sonic line, which allows the subsonic and supersonic sections to be constructed separately. The problem is solved numerically in the plane of a hodograph. In the subsonic region, Dirichlet's problem is formulated for Chaplygin's equation in a rectangle, one side of which is the sonic line. At the present time, two approaches have been defined in papers on calculations of a Laval nozzle, associated with the solution of the so-called “direct” and “inverse” problems (one has in mind a study of the flow in the interconnected region of sub- and supersonic flow). The direct problem determines the flow field in the case of a previously specified contour of the channel wall, the shape of which from technical considerations is obtained with certain geometry conditions. The direct problem can be applied in the construction of the Laval nozzle, if the contour of the inlet section of the channel (generally speaking, quite arbitrary) is chosen so successfully that neither shock compressions nor breakaway zones result in the flow. Although a strictly mathematical theory of the direct problem of the Laval nozzle is only being developed at present, there are still very effective numerical methods for its solution [1, 2]. In the inverse problem (which, by definition, is a problem of profiling), the contour of the nozzle is found with respect to a specified velocity distribution on the axis of symmetry. It is assumed that this quite arbitrary dependence can be selected from the condition of the absence of breakaway zones and shock compressions in the nozzle. By its formulation, the inverse problem is Cauchy's problem which, as is well-known, is incorrect in the classical sense in the ellipticity region — the subsonic section of the nozzle. At present, there are also efficient methods of solving the inverse nozzle problem [3], by interpreting it as an arbitrarily correct problem. Difficulties can arise in the inverse problem, in the provision of short (and, consequently, steep) nozzles because of the sharp increase of the error in the calculation. Together with the stated problems, a procedure can be evolved which is associated with the solution of the correctly posed problem for Chaplygin's equation in the plane of the hodograph. This approach is convenient in that it succeeds a priori in fulfilling the important condition of monotonicity of the velocity at the wall, ensuring (in the absence of shock compressions) nonseparability of the streamline flow at any Reynold's numbers.  相似文献   

15.
H.-H. Dai 《Wave Motion》1998,28(4):367-381
In this paper, we study an integrable nonlinear evolution equation which arises in the context of nonlinear dispersive waves in hyperelastic rods. To consider bounded travelling-wave solutions, we conduct a phase plane analysis. A new feature is that there is a vertical singular line in the phase plane. By considering equilibrium points and the relative position of the singular line, we find that there are in total three types of phase planes. The trajectories which represent bounded travelling-wave solutions are studied one by one. In total, we find there are 12 types of bounded travelling waves, both supersonic and subsonic. While in literature solutions for only two types of travelling waves are known, here we provide explicit solution expressions for all 12 types of travelling waves. Also, it is noted for the first time that peakons can have applications in a real physical problem.  相似文献   

16.
A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers is proposed. It is especially useful for computation of laminar-turbulent transition and turbulence starting from small-amplitude disturbances. The laminar stage, up to the beginning of the breakdown in laminar-turbulent transition, is computed by parabolized stability equations (PSE). The direct numerical simulation (DNS) method is used to compute the transition process and turbulent flow, for which the inflow condition is provided by using the disturbances obtained by PSE method up to that stage. In the two test cases incfuding a subsonic and a supersonic boundary layer, the transition locations and the turbulent flow obtained with this method agree well with those obtained by using only DNS method for the whole process. The computational cost of the proposed method is much less than using only DNS method.  相似文献   

17.
Numerical methods, based on first order difference schemes are used to investigate features of three-dimensional subsonic and supersonic flows of an inviscid non-heat-conducting gas in control jets. Elements of the nozzle channels considered are axisymmetric, and flow symmetry arises from the nonaxial feature of the prenozzle volume and the subsonic part of the nozzle, or because of nonaxiality of elements of the supersonic part. In the first case the nozzle includes an asymmetric subsonic region in which reverse-circulatory flow is observed, and in the second case it includes a region of sudden expansion of the supersonic flow from the asymmetric stagnation zone.Translated from Izvestiya Akademii NaukSSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 126–133, November–December, 1978.The authors thank A. N. Kraiko for useful comments and M. Ya. Ivanov for his interest in this work.  相似文献   

18.
The transonic flow equation [1] for plane unsteady irrotational idealgas flows is extended to the case of subsonic, transonic or supersonic flows in a region with an almost constant value of the velocity using orthogonal flow coordinates (family of equipotential lines and streamlines). A solution for the nonlinear far field of steady transonic flow past an airfoil has been obtained for the transonic equation [2]. In this paper it is obtained for a generalized transonic equation and its asymptotic expansion is given. In using difference methods of calculating the flow past an airfoil in the transonic regime a knowledge of the nonlinear field makes it possible to reduce the dimensions of the calculation region (near field) as compared with the region determined by the far field of the linear theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 87–91, January–February, 1986.  相似文献   

19.
Study is made of how the nonlinear properties of orthotropic composites and the ellipticity of an opening affect the stress–strain state of thin spherical shells subjected to internal pressure. An analysis of numerical results reveals compression on the inside surface of the shell near the broad of the elliptical opening. It is pointed out that as the ellipticity increases, the deformation process near the opening transforms from uniform tension and bending, typical of a shell with a circular opening, to dominated tension near the narrow of the opening and to dominated bending near the broad.  相似文献   

20.
At the present, spatial lifting systems are usually calculated numerically using linear approximation. However, the practical application of such systems at moderate and large angles of incidence requires new approaches that allow for various nonlinear effects such as large disturbances, flow separation, and jumps in entropy across shock waves. The existing investigations [3, 4] generally cover only simple systems (bodies of revolution, wings, and so on). Here, a numerical method is proposed for investigating supersonic flows past complicated spatial systems. The method extends and continues the well-known methods widely used to solve analogous problems in subsonic aerodynamics [5, 6]. Some examples of the computation of the aerodynamic parameters for flows past wings and spatial lifting systems are also given.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 142–148, May–June, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号