首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oligothiophene derivative 4-(5' " '-decyl-[2,2';5',2' ';5' ',2' ";5' ",2' " '] pentathiophen-5-yl)-butyric acid (D5TBA) was synthesized by Stille cross-coupling methods using functionalized thiophene monomers. The structural and mechanical properties of D5TBA self-assembled monolayers on mica have been studied by atomic force microscopy (AFM). The self-assembled films were prepared by immersing the mica in dilute chloroform or tetrahydrofuran (THF) solutions. The films were predominantly of monolayer thickness with molecules packed in nearly upright orientations. In regions covered with multilayers, the molecules in each monolayer were oriented opposite to those in the neighboring ones, that is, with COOH-COOH and CH3-CH3 contact. The nature of the end group in contact with the substrate depended on the solvent used and the degree of hydration of the substrate, with hydrophobic chloroform solvent favoring the methyl end down and hydrophilic THF favoring the acid group end down. The orientation could also be controlled by dipping using the Langmuir-Blodgett technique.  相似文献   

2.
有机HTDIOO分子LB膜结构的AFM研究   总被引:1,自引:0,他引:1  
利用原子力显微镜(AFM)对有机分子HTDIOO单层和多层LB膜结构进行了观察。实验结果表明,针尖与LB膜表面分子间的相互作用力会对成像的膜结构有影响。当悬臂针尖与LB膜表面分子的相互作用力较大时,针尖会扰动HTDIOO分子在单层LB膜中的有序排列。HTDIOO单层LB膜具有有序结构;而在多层LB膜中,HTDIOO分子则聚集在一起形成了一定的畴结构。  相似文献   

3.
利用原子力显微镜(AFM)对有机分子HTDIOO单层和多层LB膜结构进行了观察·实验结果表明,针尖与LB膜表面分子间的相互作用力会对成像的膜结构有影响.当悬臂针尖与LB膜表面分子的相互作用力较大时,针尖会扰动HTDIOO分子在单层LB膜中的有序排列.HTDIOO单层LB膜具有有序结构;而在多层LB膜中,HTDIOO分子则聚集在一起形成了一定的畴结构.  相似文献   

4.
Atomic force microscopy operating in noncontact electrostatic force mode was used to study the interaction of water with films of alkylamines and alkylsilanes on mica. The films efficiently block water adsorption except in exposed mica areas, where it strongly modifies the mobility of surface ions. We also studied the molecular orientation of octadecylamine molecules forming monolayers and multilayer islands. In monolayer films the molecules bind to mica through the amino group, producing a positive contact potential relative to mica (dipole pointing up). In multilayer films the methyl and amino group terminations are exposed in alternating layers that give rise to alternating values of the contact potential. These findings correlate with low and high friction forces measured in the methyl termination and amino terminations.  相似文献   

5.
Three topologically different double-stranded DNA molecules of the same size (bps) have been imaged in air on mica using amplitude modulation atomic force microscopy (AM AFM) under controlled humidity conditions. At very high relative humidity (>90% RH), localized conformational changes of the DNA were observed, while at lower RH, the molecules remained immobile. The conformational changes occurred irreversibly and were driven principally by superhelical stress stored in the DNA molecules prior to binding to the mica surface. The binding mechanism of the DNA to the mica (surface equilibration versus kinetic trapping) modulated the extent of the conformational changes. In cases where DNA movement was observed, increased kinking of the DNA was seen at high humidity when more surface water was present. Additionally, DNA condensation behavior was also present in localized regions of the molecules. This study illustrates that changes in the tertiary structure of DNA can be induced during AFM imaging at high humidity on mica. We propose that AM AFM in high humidity will be a useful technique for probing DNA topology without some of the drawbacks of imaging under bulk solution.  相似文献   

6.
This paper describes the fabrication of self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto polyelectrolyte multilayers (PEMs). The patterned SAMs on PEMs were created by ionic interactions using microcontact printing (microCP) technique. The created m-dPEG acid monolayer patterns on PEMs act as resistive templates, and thus further depositions of consecutive poly(anion)/poly(cation) pairs of charged particles result in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. In this study, we illustrate nonlithographic methods of patterning and controlling 3-D PEM architectures and selective particle depositions. We investigated the effect of variables--the choice of solvent, concentration, pH, substrate pretreatment, and stamp contact times--on microcontact printing of m-dPEG acid molecules onto PEM films to determine the optimal conditions for these parameters to achieve efficient transfer of m-dPEG acid patterns onto PEMs. Among the variables, the pH of the m-dPEG acid ink solution played the most important role in the transfer efficiency of the patterns onto the multilayer films. The patterned films were characterized by optical microscopy and atomic force microscopy (AFM).  相似文献   

7.
Submonolayer thin films of a three-ring bent-core (or banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were vacuum-deposited on a mica surface, and a spontaneous transition from monolayer films to bilayer crystals was observed at room temperature, which was ascribed to the specific molecular shape and polar layered packing of the bent-core molecules [Tang et al. J. Phys. Chem. B 2004, 108 (34), 12921-12926]. The crystal nucleation and growth from the monolayer films as well as the melting phase transition from the bilayer crystals were investigated using atomic force microscopy (AFM). It was shown that after initial nucleation, the crystal growth was achieved through three pathways: direct absorption of molecules from monolayer films, molecular cluster diffusion, and quasi-Ostwald ripening. When annealing the bilayer crystals at elevated temperatures, morphological change from a bilayer to a monolayer was observed, and some new islands with fingerlike patterns were formed during this process, which resulted from a diffusion-controlled growth of the molten molecules. In general, the high-resolution AFM in combination with the molecularly thin m-OSB films provided us with direct visualization of nucleation, crystal growth, melting, and film morphology evolution on the mesoscopic scale, which are of fundamental interest from the theoretical viewpoint and are of central importance for the control of interfacial properties in practical applications.  相似文献   

8.
We observed by using atomic force microscope (AFM) phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) monolayers on mica being annealed and cooled to a selection of temperatures through steps of 2-4 degrees C/min. The annealed phospholipid monolayers started to disappear at 45-50 degrees C and disappeared completely above 60-63 degrees C under AFM observation. The phospholipid monolayers reformed when the samples were cooled below 60 degrees C and developed from fractal into compact monolayer films with decreasing temperatures. Simultaneously the height of the reformed phospholipid films also increased with decreasing temperatures from 0.4 nm to the value before annealing. The observed thermal features are attributed to a phase-transition process that upon heating to above 45-50 degrees C, the lipids condensed in the monolayers transform into a low-density expanded phase in which the lipids are invisible to AFM, and the transformation continues and completes at 60-63 degrees C. The lipid densities of the expanded phase inferred from the dissociated area of the condensed phase are observed to be a function of the temperature. The behavior contrasts with a conventional first-order phase transition commonly seen in the Langmuir films. The temperature-dependent height and shape of the reformed phospholipid films during cooling are argued to arise from the adjustment of the packing and molecular tilting (with respect to the mica surface) of the phospholipids in order to accommodate more condensed phospholipids.  相似文献   

9.
Microcontact printing is commonly used to create patterned films of molecules covalently bonded to substrates (e.g., thiols on gold). Here we describe microcontact printing of several types of noncovalently bonding molecules on mica. Due to the weaker interaction of the molecules with the substrate, environmental factors such as temperature and relative humidity play an important role. The vapor pressure of the inks also had a large impact on the fidelity of the stamped patterns. Fingering instabilities were observed for monolayers of octadecanol, docosanol, stearylamine, and stearic acid stamped at moderate relative humidity. The fidelity of the stamped pattern generally increased with the headgroup-surface interaction strength. These stamped monolayer films shed light on molecular transfer and two-dimensional spreading mechanisms.  相似文献   

10.
Atomic force microscopy (AFM) has been applied to visualize expanded linear chain and compact crystalline conformations of ultrahigh molecular weight polyethylene (PE) molecules deposited on mica and graphite from diluted solutions at elevated temperatures. Isolated PE chains are visualized on mica with the apparent negative AFM height and the contour length much shorter than the molecular length. The chain conformations have both the kinked random‐coil sites and the sites of the unexpectedly large two‐dimensional expansion. The crystalline conformations on mica are small single‐molecule rod‐like nanocrystallites and the isolated block‐type “edge‐on” nanolamellae comprising several PE molecules. Noticeable fluctuations of the fold length in the range of approximately 10–20 nm around the averaged value of about 15 nm are observed for nanocrystallites and on tips of some nanolamellae. The explanation of the experimentally observed features of chain surface conformations on mica is proposed. It implies the immobilization of PE molecules in the nm‐thickness salt layer formed on mica surface at ambient conditions after PE deposition and the presence along the chain of multiple expanded chain folds. Only isolated lamellae and lamellar domains of a monolayer height are observed on graphite samples. The substrate/polymer epitaxial incommensurability important for the observation of the PE linear chain surface conformations is discussed from the comparison of the results obtained for mica and graphite, the coil‐to‐crystal intramolecular transformation is assumed to be inhibited on mica surface. The slow disintegration of the original gel structure of PE stock‐solution used for the high‐temperature depositions was found to result in the characteristic large‐scale morphological heterogeneity of the samples. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 766–777, 2010  相似文献   

11.
The structural evolution and thermal stability of perfluoro-pentacene (PF-PEN) thin films on Ag(111) have been studied by means of low-temperature scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). Well-defined monolayer films can be prepared by utilizing the different adsorption energy of mono- and multilayer films and selectively desorbing multilayers upon careful heating at 380 K, whereas at temperatures above 400 K, a dissociation occurs. In the first monolayer, the molecules adopt a planar adsorption geometry and form a well-ordered commensurate (6 × 3) superstructure where molecules are uniformly oriented with their long axis along the <110> azimuth. This molecular orientation is also maintained in the second layer, where molecules exhibit a staggered packing motif, whereas further deposition leads to the formation of isolated, tall islands. Moreover, on smooth silver surfaces with extended terraces, growth of PF-PEN onto beforehand prepared long-range ordered monolayer films at elevated temperature leads to needle-like islands that are uniformly aligned at substrate steps along <110> azimuth directions.  相似文献   

12.
Monolayers of dendrimers were prepared on mica by spin-coating of the second generation carbosilane dendrons with 9 SiCl(3) periphery groups. AFM images of the films showed the presence of soft yet robust, dome-shaped features with a base diameter of 100-2000 nm. The apparent height of the features, ranging from 10 to 200 nm, rapidly reduced under increasing compression force, eventually to the same value ( approximately 2.5 nm) corresponding to a bilayer of the flattened dendrons. The change in shape of the features in response to the compression force from the AFM tip was fully reversible, indicating that the features were robust. The contrast of the features in the tapping mode AFM (TMAFM) phase images flipped at a setpoint ratio of approximately 0.55. In contrast to the reported amplitude vs displacement (A/z) curves for compliant materials, A/z curves of the features showed that the reduction of amplitude was larger than the tip displacement as if the cantilever tip were repelled by the soft features. This result cautions the use of amplitude/phase vs displacement (APD) curves for interpreting TMAFM images and for optimizing conditions for TMAFM imaging of very soft and "sticky" surfaces. On the basis of the AFM studies, we believe that the dome-shaped features are membranous air bubbles. The membranes of the bubbles were probably composed of a bilayer of the dendron molecules bound through the peripheral silanol groups. The bilayer could be formed by self-assembly of the molecules on top of the air bubbles entrapped at the monolayer/solution interface during spin-coating.  相似文献   

13.
The methods of incorporating thiol-stabilized CdTe nanoclusters into mono- and multilayer films produced by the Langmuir-Blodgett (LB) technique on the basis of anionic (behenic acid) and cationic (octadecyltrinonylammonium (ODTNA) iodide) surfactants were investigated. Pressure-area isotherms, quartz crystal microbalance (QCM), FTIR, atomic force microscopy (AFM) and UV/Vis spectroscopy give evidence on the incorporation of the nanoclusters in LB films. The limiting surface area of the behenic acid monolayer increases with a simultaneous decrease of the film strength. The optical absorption of the films obtained through the incorporation of the clusters acquires the features of CdTe nanocrystals. The noticeable difference in the deposition process was observed for the two types of stabilizing ligands (thioglycerol and mercaptoethanol) used for the CdTe clusters. The bonding of the CdTe clusters with the carboxylic group of behenic acid monolayer is established for the thioglycerol-stabilized clusters.  相似文献   

14.
Dip-pen纳米刻蚀技术(简称DPN技术)为在目标基底上沉积一个有序或连续的图案提供了一条简单而有效的途径,DPN技术是一种直接书写的扫描探针刻蚀技术,它使用原子力显微镜探针针尖,在一定的驱动力下,直接将化学试剂“墨水”转移到目标基底上.近年来,利用DPN技术已经成功地实现了多种“墨水一基底”组合。  相似文献   

15.
Self-assembled monolayers (SAMs) of 1-alkenes on hydrogen-passivated silicon substrates were successfully patterned on the nanometer scale using an atomic force microscope (AFM) probe tip. Nanoshaving experiments on alkyl monolayers formed on H-Si(111) not only demonstrate the flexibility of this technique but also show that patterning with an AFM probe is a viable method for creating well-defined, nanoscale features in a monolayer matrix in a reproducible and controlled manner. Features of varying depths (2-15 nm) were created in the alkyl monolayers by controlling the applied load and the number of etching scans made at high applied loads. The patterning on these SAM films is compared with the patterning of alkyl siloxane monolayers on silicon and mica.  相似文献   

16.
The random coil conformation of an isolated conventional synthetic polymer chain was clearly imaged by atomic force microscopy (AFM). The sample used was a poly(styrene)-block-poly(methyl methacrylate) diblock copolymer. A very dilute solution of the copolymer with benzene was spread on a water surface. The structure thus formed on water was subsequently transferred and deposited onto mica at various surface pressures and observed under AFM. The AFM images obtained with films deposited at a low surface pressure (<0.1 mN/m) showed a single polystyrene (PS) block chain aggregated into a single PS particle with a single poly(methyl methacrylate) (PMMA) block chain emanating from the particle. Immediately after the deposition, the single PMMA block chain aggregated to form a condensed monolayer around the polystyrene particles. However, after exposing the deposited film to highly humid air for 1 day, the PMMA chains spread out so that the single PMMA block chain could be identified as a random coil on the substrate. The thin water layer formed on the mica substrate in humid air may enable the PMMA block chain to be mobilized on the substrate, leading to the conformational rearrangement from the condensed monolayer conformation to an expanded and elongated coil. The elongation of the PMMA chain was highly sensitive to the humidity; the maximum elongation was obtained at 79% relative humidity. The elongation was a slow process and took about 20 h.  相似文献   

17.
An undecanol film adsorbed on a mica surface was found to rearrange and spread in a position-controlled way induced by a tapping mode atomic force microscopy (AFM) probe. AFM images of varying scanning times showed that before forming an ordered monolayer the undecanol molecules were adsorbed on the mica surface in the disordered and disorganized status. With the proceeding of scanning, these undecanol molecules gradually formed an ordered and flat film. Such behavior was caused by the formation of a stable film and had never been reported for other alcohols.  相似文献   

18.
The structural stability of alkenthiolate monolayers assembled on gold surfaces is a result of the well-defined organization of the individual molecules within the film. The formation of three-dimensional films assembled by stacking multiple molecular monolayers is substantially more challenging because the correct organization of the molecular components is required not only within the individual monolayers but also between the monolayers of the film. In this paper we examine the structure of multilayer films based on mercaptoalkanoic acid monolayers in which ligation between adjacent monolayers is achieved using the interaction of carboxylic acid and thiol groups with a divalent Cu ion. Using contact angle analysis and atomic force microscopy, we show that the use of Cu(2+) has profound implications on the properties and structure of the multilayer film. In particular, the divalent ions effectively prohibit the complete assembly of the next monolayer. For multilayer SAMs assembled from short alkane chains with six methylene groups, we find that molecules in the incomplete adlayer organize themselves randomly over the underlying monolayer. However, as the number of methylene groups increases (11 and 16 methylene groups), the upper layer tends to fracture into discrete islands which cover around 50% of the surface. The height of these islands is found to be equal to that expected for a complete, well-ordered monolayer assembled from the equivalent mercaptoalkanoic acid molecules. This relationship between chain length and island growth results from the migration of molecules into ordered aggregates driven by the reduction of free energy associated with maximizing intermolecular interactions.  相似文献   

19.
The aggregative behaviors of hydroxypropylcellulose (HPC) molecules in aqueous solution and on substrates have been observed by employing laser light scattering (LLS) and, after deposition on a mica surface, atomic force microscopy (AFM). LLS studies showed that the HPC molecules formed large aggregates through self-association when the concentration of the solution was above the critical concentration c(t). AFM measurements revealed that when a dilute aqueous solution of HPC molecules was deposited onto a mica substrate at a temperature below its lower critical solution temperature (LCST) thin nanofibers were formed with a height of 0.9 nm, whereas thick nanofibers were formed when an aqueous solution of HPC molecules was deposited onto a substrate above its LCST. Furthermore, the growth of nanofibers led to the formation of fan structures.  相似文献   

20.
Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号