首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Static and dynamic photoelastic experiments were conducted to evaluate the energy lost due to damping in a thick-walled-ring specimen during a run-arrest fracture event. Short starter cracks were machined into a series of ring specimens fabricated from Homalite 100 and the specimens were loaded by a specially designed mechanical deformeter to giveK Q/KImranging from 1.76 to 2.15. The crack was initiated and high-speed photographs of the isochromatic-fringe loops at the tip of the running crack were recorded. The data were analyzed to obtain the instantaneous stress-intensity factorK(t), the normalized crack positiona/w, and the crack velocity \(\dot a\) . A comparison ofK, as a function of positiona/w, was made between static and dynamic crack growth. Average values ofK were determined from these curves and estimates of initial strain energy and energy lost in forming the fracture surface were made. An energy balance was used to evaluate the energy loss due to damping in all the experiments. The energy loss during the run-arrest event was approximately 50 percent of initial strain energy.  相似文献   

2.
A plasticity correction factor for the dynamic stress-intensity factor,K I dyn , associated with a propagating crack tip in the presence of small-scale yielding, is derived from Kanninen's solution for a constant-velocity Yoffe crack with a Dugdale-strip yield zone. Distortions in the otherwise elastic isochromatics surrounding the constant-velocity crack tip are also studied by the use of this model. This plasticity correction factor is then used to evaluateK I dyn from the dynamic isochromatics of a propagating crack in a 3.2-mm-thick polycarbonate wedge-loaded rectangular double-cantilever-beam specimen. The correctedK I dyn is in good agreement with the corresponding values computed by a dynamic, elastic-plastic finite-element code executed in its generation mode.  相似文献   

3.
An experimental method to determine the complete stress versus deformation relation for a thin adhesive layer loaded in shear is presented. The method is based on a classic specimen geometry; the end-notch flexure specimen. The experiments are evaluated using an inverse method. First, the variation of the energy release rate with respect to the shear deformation at the crack tip is measured during an experiment. Then the traction–deformation relation is derived using an inverse method. The theory is based on the path-independence of the J-integral and considers the effects of a flexible adhesive layer.Quasi-static experiments on three different specimen geometries are performed using a servo-hydraulic testing machine. The experiments give consistent results. This shows that the traction–deformation relation can be taken as independent of the dimensions of the adherends. Thus, the constitutive relation can be considered as a property of the adhesive layer. The deformation process at the crack tip is also monitored during the experiments by the use of a digital camera attached to a microscope.  相似文献   

4.
A three-point bend fixture has been designed, fabricated, and utilized to demonstrate the feasibility of performing in-situ J-testing at ambient and elevated temperatures inside a scanning electron microscope (SEM). Using the three-point bend test technique, in-situ SEM J-testing has been performed to measure the crack mouth opening displacement and crack extension as a function of the applied load in order to generate J-R curves for Zircaloy-4 at 25°C and 316°C. Once the J-R curve is determined, an equivalent KJ-resistance (KJ-R) curve is computed on the basis of a relationship between the J-integral (J) and the stress intensity factor (K). The J-R and KJ-R curves of Zircaloy-4 exhibit a rising R-curve behavior, while the elastic K-R curve underestimates the fracture resistance of Zircaloy-4 once substantial crack extension has occurred. For the specimen dimensions considered, the J-R curves generated by in-situ SEM J-tests are not sensitive to the specimen geometry and measure the actual fracture resistance of the material. Furthermore, the onset of crack extension is dictated by the emission of one or more slipbands from the crack tip, and a change in the crack-tip displacement field, followed by void formation along the slipband, and linkage of the voids with the main crack.  相似文献   

5.
In conventional fracture-toughness testing, the line of application of the loads remains fixed with respect to specimen geometry. In this testing machine, the load moves with the advancing crack front, and displacement is used as the controlled variable to propagate and arrest a crack. The energy-release rate at the onset of crack propagation and, hence, the plane-strain fracture toughnessK Ic can be measured directly without compliance calibration or stress-intensity evaluation. The specimen is in the form of a flat plat 25 by 50 cm which is simple to machine and provides about 30 values ofK Ic. The versatility of the machine is demonstrated by making a statistical analysis ofK Ic for 7075-T6 Al by showing the effect of plate thickness on the fracture toughnessK c using a tapered specimen, and by evaluatingK c in 7075 Al as a function of aging temperature in a thermal-gradient-treated specimen.  相似文献   

6.
The evaluation of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C1h, can be defined which correlates the near-tip field to the applied load.It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C1h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C1 is the relevant load parameter for predominantly secondary creep of the whole specimen.  相似文献   

7.
A finite element analysis was performed to simulate crack tip blunting and the development of the intense strain region in a small compact tension specimen (0.4 T CT) of SA533B-1 under plane strain large-scale yielding, with the condition of large-geometry change around the crack tip taken into consideration. The region where the equivalent plastic strain \?g3p is greater than 0.15 was defined as the intense strain region, which corresponded to the recrystallized-etched zone delineated experimentally around the blunting crack tip. The development of the intense strain region was discussed as a function of the J-integral and the crack opening displacement. A linear relationship was obtained between the plastic work Wp dissipated within the intense strain region and (Jy)2 or b2, where b is the crack opening displacement, defined as the separation of the two points at which the boundary of the intense strain region surrounding the crack tip intersects with the free surfaces of the crack.  相似文献   

8.
We report on unique measurements of multiple microsecond-duration arrest periods during the propagation of high speed (>1 km s−1) cracks in micromachined single-crystal silicon specimens. These events were recorded electronically and in physical features remaining on the fracture plane. Using time-of-flight calculations, we have determined that these arrest patterns are due to the interference of boundary-reflected stress waves with the propagating crack tip. The specimen size, the measurement method, and the low acoustic attenuation in cyrstalline silicon facilitated the observation of these phenomena.  相似文献   

9.
Using the criterion that a crack will extend perpendicular to the maximum circumferential stress,σ θ, we show that the directional stability of crack growth is governed by the location of microcrack initiation ahead of the crack tip. At distances greater than a geometrical radiusr o, the maximum value ofσ θ deviates from the position of symmetry. Thus, if we assume that the physical processes involved in fracture lead to crack initiation at a distancer c ahead of the crack tip, the criterion for directional stability isr o>r c. Experimental and theoretical values ofr o verify that, asr o becomes small, the crack's directional stability deteriorates. Observing that a lengthwise compressive stress increasesr o, a center-cracked specimen was developed which allows the application of controlled lengthwise compression independently of the opening-mode load. A detailed photoelastic analysis of the specimen has provided the value ofr o as a function of the crack length. The value ofr o is then compared with the expected microcrack initiation distances in ductile fracture. By applying sufficient lengthwise compression, we are able to make the crack grow straight and obtain numerous data points from this specimen which would otherwise be directionally unstable. The results indicate that, as the total lengthwise tensile stress at the crack tip increases, the fracture toughness also increases. Using this information we can then adjustK Ic for zero lengthwise loading and obtain a geometry independent fracture toughness.  相似文献   

10.
Simultaneous measurements of the dynamicstress-intensity factorK I dyn and the dynamic-fracture toughnessK ID were made in a high-strength steel to investigate the relation between energy delivered to and energy absorbed by rapidly propagating cracks. Values ofK I dyn were obtained intermittently during the propagation history by the shadow optical method of caustics from high-speed photographs of the moving crack tips. Values ofK ID were calculated from temperature maxima recorded by thermocouples near the crack path. The results indicate that for fast-running cracks, the change in energy available at the crack tip can be significantly less than the energy absorbed in crack extension, suggesting that currently used dynamic-energy-balance methods for determining dynamic-fracture toughnesses may provide erroneous values.  相似文献   

11.
In this paper, the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics. The initial curve and caustic equations were derived under the mixed-mode dynamic condition. A multi-point measurement method for determining the dynamic stress intensity factors,K I d , andK II d , and the position of the crack tip was developed. Several other methods were adopted to check this method, and showed that it has a good precision. Finally, the dynamic propagating process of a mixed-mode crack in the three-point bending beam specimen was investigated with our method.  相似文献   

12.
The dynamic fracture behavior of polyester/TiO2 nanocomposites has been characterized and compared with that of the matrix material. A relationship between the dynamic stress intensity factor,K I and the crack tip velocity,å, has been established. Dynamic photoelasticity coupled with high-speed photography has been used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the nanocomposites. Single-edge notch tension and modified compact tension specimens were used to obtain a broad range of crack velocities. Fractographic analysis was conducted to understand the fracture process. The results showed that crack arrest toughness in nanocomposites was 60% greater than in the matrix material. Crack propagation velocities prior to branching in nanocomposites were found to be 50% greater than those in polyester.  相似文献   

13.
We have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture test results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.  相似文献   

14.
This Note deals with an algorithmic approach about the crack initiation and the crack growth in a viscoelastic media for mixed mode configurations. This numerical model couples a finite element resolution of viscoelastic behavior and the integral calculus allowing a mixed mode separation in terms of stress intensity factors and energy release rate. The numerical application uses a 2MCG specimen allowing, in the same time, different mixed mode ratios and a crack growth stability. The finite element algorithm allows us to model the crack tip advance by taking into account the crack lip uncohesion in the process zone. It size is defined by taking into account stress field in the crack tip vicinity. To cite this article: R. Moutou Pitti, F. Dubois, C. R. Mecanique 337 (2009).  相似文献   

15.
A linear elastic three-dimensional finite element analysis is made to analyze the near field stress behavior of an edge cracked rectangular bar simply supported and subjected to central impact at the back side of the crack. The material is made of 40 Cr steel. Determined numerically are the local time histories of the stress wave, displacement near load point, crack tip strain, and dynamic stress intensity factor K(d)1. The above quantities were also measured experimentally by performing impact tests; they agreed well with the analytical results and determine the load at fracture initiation and hence the critical dynamic stress intensity factor K(d)1c. The interaction effect between the loading bar and specimen appears to be negligible.  相似文献   

16.
A very simple model of the double cantilever beam (dcb) dynamic crack propagation specimen is studied. The main assumption on which the model is based is that the arms of the dcb specimen deform as shear beams. The particular problem studied is the dynamic growth of a sharp crack from a blunt pre-crack with the ends of the specimen arms held at a fixed separation distance. It is demonstrated that this simple model predicts crack motion which is qualitatively consistent with the results of more detailed numerical analyses of the problem and with experimental results. The analysis employs an energy balance crack propagation criterion and both constant specific fracture energy and a class of crack speed dependent fracture energies are considered. Among the features exhibited by the model is that, for constant specific fracture energy, the crack tip speed is constant from initiation up to arrest. On the other hand, for the same geometry and loading conditions, but a strongly crack speed dependent specific fracture energy, the crack speed decreases gradually between fracture initiation and crack arrest.  相似文献   

17.
A photoelastic study of high speed crack propagation in Homalite 100 was conducted to measure hysteresis in the constitutive relation forK ID -å. The fracture specimen was designed to obtain both crack acceleration and deceleration during a single crack extension. Additional loads perpendicular to the cráck-propagation path were applied at secondary locations to accentuate the magnitude of acceleration-deceleration observed in this specimen. The photoelastic data were analyzed using dynamic stress field equations in conjunction with the least-squares over-deterministic method to obtain the crack-propagation fracture toughness,K ID . Crack velocity, å, was determined numerically by differentiating a polynomial fitted to the crack length-time data in a leastsquares sense. Experimental results indicate that Homalite 100 does not exhibit significant hysteresis in theK ID -å relation.  相似文献   

18.
Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant ΔK-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks.A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.  相似文献   

19.
The problem of a mode I crack in nanomaterials under a remote mechanical load is investigated. The effect of the residual surface stress on the crack surface is considered and the solutions to the crack opening displacement (COD) and the stress intensity factor (KI) are obtained. The results show that the surface effect on the crack deformation and crack tip field are prominent at nanoscale. Moreover, COD and KI are influenced by the residual surface stress not only on the surface near the crack tip region but also on the entire crack surface.  相似文献   

20.
利用自制的ZL-2超强脉冲放电装置对含有单边裂纹的ZL303合金试件进行电磁热止裂试验。通过微机控制电子万能试验机对止裂前后试件进行拉伸试验,并用SEM扫描电镜对断口进行观察,最后理论分析了受拉伸试件的应力强度因子。结果表明,电磁热止裂技术对ZL303具有良好的止裂效果;放电强化作用主要集中在裂尖附近,裂尖钝化形成焊口,裂尖处组织变细且强度提高,试件的抗拉强度平均提高了16.5%;电热应力强度因子削弱了拉应力所产生的应力强度因子,达到力学性能强化的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号