首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
朱庆  夏春谷  刘超 《有机化学》2021,(2):661-668
报道了一种铁催化烷基酮类化合物硼化合成三级α-羟基硼酸酯的反应,使用了可商业购买的FeBr2作为催化剂,加入醇作为添加剂来加速反应的进行,同时避免副反应的发生.通过该方法合成了一系列三级α-羟基硼酸酯化合物,反应具有很好的底物兼容性以及官能团兼容性.该铁催化剂对于大位阻的酮类化合物的硼化反应,表现出优于铜催化的活性.同时该反应可应用于克级规模的制备,随后通过对三级α-羟基硼酸酯的C-O键进行官能化,将所得的三级α-羟基硼酸酯转化为三级烷基硼酸酯以及偕二硼、偕硅硼类化合物.  相似文献   

2.
报道了一种铁催化烷基酮类化合物硼化合成三级α-羟基硼酸酯的反应,使用了可商业购买的FeBr_2作为催化剂,加入醇作为添加剂来加速反应的进行,同时避免副反应的发生.通过该方法合成了一系列三级α-羟基硼酸酯化合物,反应具有很好的底物兼容性以及官能团兼容性.该铁催化剂对于大位阻的酮类化合物的硼化反应,表现出优于铜催化的活性.同时该反应可应用于克级规模的制备,随后通过对三级α-羟基硼酸酯的C—O键进行官能化,将所得的三级α-羟基硼酸酯转化为三级烷基硼酸酯以及偕二硼、偕硅硼类化合物.  相似文献   

3.
亮点介绍     
《有机化学》2012,32(7):1350-1351
无金属参与的硼化反应:从N-对甲基苯磺酰基腙合成烷基硼酸酯Angew.Chem.Int.Ed.2012,51,2493~2496有机硼化合物,包括芳基硼化合物和烷基硼化合物,在有机合成上有着重要的作用.近些年来,烷基硼化合物的偶联反应以及官能团转化反应取得了很大的进展.与此同时,烷基硼酸的生物活性研究也得到了较多的关注.目前合成烷基硼化合物主要有四种方法:一是格氏试剂或锂试剂与硼试剂反应;二是Brown硼氢化反应;三是Miyaura  相似文献   

4.
周炎  单自兴 《有机化学》2004,24(Z1):293
先前,我们报道了具有O3BN构架的手性螺硼酸酯催化的前手性酮、肟醚、亚胺的不对称硼烷还原反应[1-3].为了拓宽此类化合物在不对称合成中的应用范围,我们考察了手性螺硼酸酯与格氏试剂的反应.首次发现:具有O3BN构架的手性螺硼酸酯易于发生B-烃基化反应给出三配位的手性烃基硼酸酯,这就为不对称同系化反应、不对称Suzuki偶联反应等奠定了材料基础.四配位的螯合硼酸酯与格氏试剂反应的研究文献中迄今未见报道.在这篇论文中,我们将初步报告手性螺硼酸酯的这一新反应.  相似文献   

5.
黄浩  林华鑫  王敏  廖建 《化学学报》2020,78(11):1229-1234
报道了一种以手性亚砜膦配体/铜络合物为催化剂的苯乙烯不对称硼胺化反应.该方法以联硼酸频哪醇酯(B2pin2)为硼源,以商业可得的1,2-苯基异噁唑为亲电氮源,合成了一类β-氨基硼酸酯类化合物,目标产物可以方便地转化为β-硼酯伯胺化合物,为结构多样的手性氨基化合物合成提供了一条技术途径.  相似文献   

6.
1,1-二氯烯烃结构存在于许多天然产物中,同时也是一类重要的合成中间体,广泛应用于炔烃、卤代炔烃以及芳烃化合物的合成.报道了一个新的1,1-二氯烯烃化试剂:二氯甲基(2-吡啶基)砜.以叔丁醇钾作为碱,二氯甲基(2-吡啶基)砜与芳香醛顺利反应,以良好的产率制备得到了1,1-二氯烯烃化合物.该方法实验操作简便、试剂易得且纯化方便.  相似文献   

7.
有机硼化合物是一种重要的有机合成中间体,有机硼酸及其衍生物可以被很容易的转化为一系列的功能性化合物并保持其空间构型不变.铜催化的α,β-不饱和化合物和联硼酸酯的不对称加成反应已经成为一个新颖的合成手性有机硼化合物的方法.综述了铜催化的α,β-不饱和化合物的不对称共轭硼化研究进展,其中包括了双膦配体、卡宾配体以及其它配体诱导的共轭硼化反应.  相似文献   

8.
有机硼化合物在合成化学、材料科学、生命健康等领域都有广泛应用,因此有机硼化合物的合成一直是研究热点.目前,催化C—B键形成反应通常使用联硼酸频哪醇酯(B2Pin2)、频哪醇硼烷(HBPin)、儿茶酚硼烷(HBCat)等作为硼试剂.相比于传统的硼试剂,硼烷与胺、膦或N-杂环卡宾等强Lewis碱的加合物(统称为稳定硼烷加合物)具有易于合成、稳定性高、易操作等特点,其作为硼试剂参与的有机硼化合物的合成最近受到越来越多的关注,已被成功用于烯(炔)烃的硼氢化、C—H键硼化、卡宾对B—H键的插入、硼自由基串联环化、取代等反应中,为有机硼化合物的合成提供了新的思路和方法.以反应类型为线索,系统综述了稳定硼烷加合物在有机硼化物合成中的应用研究进展.  相似文献   

9.
在温和反应条件下,铜催化间隔烯炔衍生物与有机硅烷硼酸酯化合物发生反应,通过调控有机硅硼试剂的用量,以较高产率分别制备共轭乙烯基联烯硅和1,3-共轭二烯硅产物.该方法为制备多取代立体选择性官能团化联烯和1,3-共轭二烯产物提供了简单、高效的合成工具.  相似文献   

10.
张涌灵  王敏  曹鹏  廖建 《化学学报》2017,75(8):794-797
报道了一种以手性亚砜膦配体/铜络合物为催化剂的苯乙烯不对称硼胺化反应,该方法以联硼酸频哪醇酯(pinB-Bpin)和亲电性胺试剂分别作为硼源和氮源,合成手性β-氨基烷基硼酯,该产物可方便地转化为有用的手性β-羟胺类化合物.  相似文献   

11.
Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.  相似文献   

12.
The amido metal chemistry of the rare earth elements is a rapid developing area in coordination chemistry. Especially bulky mono and bidentate amido and amidinates have been introduced as ligands in rare earth chemistry. Due to these sterically demanding ligands, the coordination numbers of the rare earth elements are significantly reduced. This article focuses on two of these bulky ligand systems: bis(trimethylsilyl)amide and aminotroponiminates. The homoleptic bis(trimethylsilyl)amides of rare earth elements, [Ln{N(SiMe3)2}3], are well established compounds in synthetic chemistry. Therefore, this article reviews recent progress in the catalytic application of these compounds. In the second part of this research report, it is shown that N, N′‐disubstituted aminotroponiminates and mono bridged bisaminotroponiminates can be used as cyclopentadienyl alternatives. Achiral and chiral aminotroponiminates have been used. The structural properties, reactivities as well as the catalytic and synthetic applications of the aminotroponiminates complexes will be outlined in this article.  相似文献   

13.
Diazo compounds (R1R2C?N2) are known as versatile and useful substrates for an array of chemical transformations and, therefore, diazo chemistry is still far from losing anything of its long‐standing fascination. In addition to many studies on the subsequent chemistry of the diazo group, the inventory of methods for the preparation of diazo compounds is continuously supplemented by new methods and novel variations of established procedures. Several of these synthetic approaches take into account the lability and remarkable chemical reactivity of certain classes of diazo compounds, and environmentally more benign procedures also continue to be developed.  相似文献   

14.
Catalytic enantioselective α-fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α-fluorinated carbonyl compounds. Nevertheless, α-fluorination of α-nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α-hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3-(2-naphthyl)-l -alanine-derived amides are highly effective catalysts for the enantio- and site-selective α-fluorination of N-(α-arylacetyl) and N-(α-alkylacetyl) 3,5-dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α-fluorinated α-amino acid derivative). α-Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

15.
16.
The transfer hydrogenation of bicyclic and monocyclic β-keto esters using HCO2H/Et3N as the hydrogen source and TsDPEN-based Ru(II) catalysts proceeds with dynamic kinetic resolution to afford the corresponding cyclic β-hydroxy esters with moderate to excellent levels of diastereo- and enantioselectivities. The mild reaction conditions used make possible to preserve in most cases the syn relative configuration of the products, providing a complementary tool to known approaches to the synthesis of anti isomers.  相似文献   

17.
Incorporation of the fluoromethyl group can profoundly influence the physicochemical properties of organic molecules, offering a promising strategy for the discovery of novel pharmaceutical agents. Direct fluoromethylation of unfunctionalized C(sp2) centres can be achieved using fluoromethyl radicals, but current methods for their generation usually rely on the activation of non-commercial or expensive radical precursors via inefficient single electron transfer pathways, which limits their synthetic application. Here we report the development of a fluoromethylation strategy based on the generation of fluoromethyl radicals from commercially available fluoroiodomethane via halogen atom transfer. This mode of activation is orchestrated by visible light and tris(trimethylsilyl)silane, which serves as both a hydrogen- and halogen atom transfer reagent to facilitate the formation of C(sp3)–CH2F bonds via a radical chain process. The utility of this metal- and photocatalyst-free transformation is demonstrated through the multicomponent synthesis of complex α-fluoromethyl amines and amino acid derivatives via radical addition to in situ-formed iminium ions, and the construction of β-fluoromethyl esters and amides from electron-deficient alkene acceptors. These complex fluoromethylated products, many of which are inaccessible via previously reported methods, may serve as useful building blocks or fragments in synthetic and medicinal chemistry both in academia and industry.

Generation of fluoromethyl radicals via visible light-mediated halogen atom transfer activation of fluoroiodomethane facilitates both the multicomponent synthesis of α-fluoromethyl amines and the hydrofluoromethylation of electron-deficient alkenes.  相似文献   

18.
A general and powerful method for the stereo-controlled Pd-catalyzed N-allylation of amino acid esters is reported, as a previously largely unsolved synthetic challenge. Employing a new class of tartaric acid-derived C2-symmetric chiral diphosphane ligands the developed asymmetric amination protocol allows the conversion of various amino acid esters to the N-allylated products with highest levels of enantio- or diastereoselectivity in a fully catalyst-controlled fashion and predictable configuration. Remarkably, the in situ generated catalysts also exhibit outstanding levels of activity (ligand acceleration). The usefulness of the method was demonstrated in the stereo-divergent synthesis of a set of new conformationally defined dipeptide mimetics, which represent new modular building blocks for the development of peptide-inspired bioactive compounds.  相似文献   

19.
Erker  G.  Kehr  G.  Fröhlich  R. 《Russian Chemical Bulletin》2004,53(5):1007-1019
The Group IV bent metallocenes Cp2M (M = Ti, Zr, Hf) were involved in carbene-related chemistry in various ways. Examples from four different areas are used to illustrate this. In situ generated Cp2M: species exhibit some carbene-like character. They add to olefins, and their addition products can incorporate additional unsaturated organic reagents, e.g., alkyne, to form five-membered metallacycles. The high oxophilicity of the Group IV metals helps the addition of alkene-, aryne-, 2-ketone-, 2-aldehyde-, or butadiene-containing reagents to a great variety of metal carbonyl compounds to form the Fischer-type carbene complexes. The resulting zirconoxycarbene complexes have found some application in organometallic chemistry and in organic synthesis. Reactive [Cp2MIVR]+ cations can be stabilized by the addition of the Arduengo carbenes that serve as bulky two-electron donor ligands. First examples were structurally characterized. Dialkylimidazol-2-ylidenes also add to the electrophilic MX4 compounds yielding stable trans-bis(imidazol-2-ylidene)MX4 systems. Several examples are presented where ruthenium carbene complexes are used for carrying out catalytic olefin metathesis reactions at pendant olefinic substituents at the bent metallocenes. These reactions have led to the formation of novel bimetallic metallocene systems, as well as to new ansa-metallocenes. These catalytic reactions have helped in the current efforts to develop a functional group chemistry at the sensitive Group IV bent metallocene frameworks.  相似文献   

20.
HNO3-oxidized carbon nanotubes catalyze oxidative dehydrogenative (ODH) carbon–carbon bond formation between electron-rich (hetero)aryls with O2 as a terminal oxidant. The recyclable carbocatalytic method provides a convenient and an operationally easy synthetic protocol for accessing various benzofused homodimers, biaryls, triphenylenes, and related benzofused heteroaryls that are highly useful frameworks for material chemistry applications. Carbonyls/quinones are the catalytically active site of the carbocatalyst as indicated by model compounds and titration experiments. Further investigations of the reaction mechanism with a combination of experimental and DFT methods support the competing nature of acid-catalyzed and radical cationic ODHs, and indicate that both mechanisms operate with the current material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号