首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Normal melanocytes produce specialized subcellular organelles called melanosomes within which the biochemical processes of melanogenesis occurs. During sunlight-induced melanogenesis, the melanocyte-specific enzyme tyrosinase catalyzes the oxidative polymerization of 3,4-dihydroxyphenyl-alanine (DOPA) to melanin. Nucleophilic addition of cysteine to tyrosinase-generated dopaquinone leads to the formation of cysteinyldopas, precursors of pheomelanin and excreted by-products of eumelanogenesis. Under conditions of low sulfhydryl content, dopaquinone undergoes a 1,4 intramolecular cycloaddition to yield, after further oxidation, 5,6-dihydroxyindoles and/or 5,6-dihydroxy-2-carboxyindoles. These indolic melanogenic intermediates and their O-methylated metabolites, like cysteinyldopas, are excreted by actively pigmenting as well as dormant melanocytes. Indeed, it has been determined that in humans, the serum and urine concentrations of these melanogenic metabolites increase dramatically following exposure to sunlight, UVA (315-400 nm), UVB (290-315 nm) exposure, as well as during PUVA therapy and in melanoma patients, and thus have proved to be excellent biochemical markers of normal and pathological melanocyte function. While controlled light exposure or PUVA therapy generally lead to 100-300% increases in 5-S-cysteinyldopa (5SCD) and 5-methoxy-6-hydroxyindole-2-carboxylic acid (6HMICA) serum levels (normal concentration about 4–16 nmol l-1), the local concentrations in the skin and especially in the actively pigmenting melanocyte may be as high as 200 μM. Evidence is presented to document that a number of catecholic melanin precursors, including cysteinyldopas and dihydroxyindoles, are photochemically unstable in the presence of biologically relevant ultraviolet radiation (i.e. wavelengths ± 300 nm). Initial photochemical processes involve free radical production; continued photolysis yields polymeric photoproducts. Radicals produced during melanogenic metabolite photolysis have been identified by ESR spin trapping, laser flash photolysis and pulse radiolysis techniques and include hydrated electrons (eaq), hydrogen atoms (H'), hydroxyl radicals (OH), semiquinones, aryl thiyl (ArS), and alanyl carbon-based radicals. In vitro investigations of the potential photobiological significance of these reactions have demonstrated photolysis of cysteinyldopas may lead to photoinitiated DNA binding and single strand break induction. The above mentioned radical species may also damage proteins and initiate lipid peroxidation. Definitive evidence for the occurrence of these phototoxic reactions in vivo is currently unavailable, however our in vitro studies suggest a possible role for melanogenic metabolite photolysis in acute and chronic solar responses of human skin.  相似文献   

2.
The effect UV irradiation and silver, copper, and gold ions (M z+) supported on titania (anatase) have on the activity of M/TiO2 samples in ethanol conversion at 150–400°C is examined. After UV irradiation, the yields of acetaldehyde and ethylene increase for TiO2 and Ag/TiO2 samples, while the activity of Cu2+/TiO2 decreases. The activation energy of ethanol dehydration declines in the order TiO2 > Au3+ > Cu2+ > Ag+ and correlates linearly with a reduction in the radius of M z+ in crystal. The number of acidic sites on a M/TiO2 surface titrated via pyridine adsorption grows upon the introduction of M. Unlike Cu2+/TiO2, these sites are not activated after the irradiation of TiO2, Ag+/TiO2, and Au3+/TiO2. According to IR spectral data on adsorbed pyridine, all samples contain Lewis and Brönsted acidic sites.  相似文献   

3.
The growth of the carbonyl index in the degradation of polypropylene by UV irradiation, with and without UV stabilizer, has been measured and interpreted. From the kinetics of the degradation process the mathematical expression of the growth of the carbonyl index was derived using the steady-state treatment for short-lived intermediates, except for the alkyl radical P. For polypropylene without UV stabilizer and for polypropylene with UV absorber or excited-state quencher, the growth of the carbonyl index was related to UV irradiation time by X = Aeλ1t + Beλ2t. While in the presence of an antioxidant or radical scavenger, the general form was X = Aeλ1t + Beλ2t + C. The values of A, B, λ1, λ2, and C were obtained by fitting the experimental data into the equation. It was found that the error was about 15%.  相似文献   

4.
Exposure of human skin to ultraviolet (UV) radiation causes significant damage to that tissue. The effects of UV on the skin mainly include acute inflammation (erythema/edema) and abnormal keratinization wherein prostaglandin E2 (produced by cyclooxygenase‐2), interleukin‐8 and transglutaminase 1 (a major regulatory factor of keratinization) play pivotal roles. Later phases of UV‐induced skin reactions include hyperpigmentation, wrinkle formation and carcinogenesis, the former two being associated with the UVB‐induced production and/or secretion of endothelin‐1, stem cell factor and granulocyte‐macrophage colony‐stimulating factor by keratinocytes in the epidermis. Those paracrine factors then stimulate expression of the critical melanogenic enzyme tyrosinase by melanocytes in the epidermis and increase expression of neprilysin, an enzyme that degrades elastin, by fibroblasts in the dermis. This review summarizes the biological effects of the xanthophyll carotenoid astaxanthin, which prevents UV‐induced cutaneous inflammation, abnormal keratinization and wrinkling as well as pigmentation of the skin even by its postirradiation treatment.  相似文献   

5.
The use of H2O2 and UV irradiation to remove organic ligands in a chromium(III) complex for the subsequent chromium analysis is reported. The Advanced Oxidation Process (AOP) using a 5.5-W UV lamp, H2O2 and Fe2+/Fe3+ as catalyst (photo Fenton process) was found to give complete and quantitative Cr(III) → Cr(VI) conversion and removal of ligands in chromium(III) propionate [Cr3O(O2CCH2CH3)6(H2O)3]NO3, a biomimetic chromium species, as subsequent chromium analyses by the 1,5-diphenylcarbazide method and atomic absorption revealed. The current process eliminates the need for mineralization and/or dissolution of the matrix in order to remove the organic ligand, the traditional pretreatments of a sample for metal analysis. Studies to optimize the conditions for the oxidation processes, including the use of Fe2+/Fe3+ catalyst, length of UV irradiation, H2O2 concentration, pH, power of UV lamp, and reactor size, are reported.  相似文献   

6.
通过还原方法制备了Tb3+离子掺杂的硼酸锌玻璃,并观察到在254 nm紫外光激发后有明亮的绿色长余辉发光现象,余辉时间达6 h。通过激发与发射光谱、余辉光谱、余辉衰减曲线、热释光谱、热释光释出速率衰减曲线等得到的信息,研究了Tb3+离子掺杂的硼酸锌玻璃的发光性质。  相似文献   

7.
The photocatalytic activity of Bismuth‐codoped Sr4Al14O25: Eu2+, Dy3+ persistent phosphors is studied by monitoring the degradation of the blue methylene dye UV light irradiation. Powder phosphors are obtained by a combustion synthesis method and a postannealing process in reductive atmosphere. The XRD patterns show a single orthorhombic phase Sr4Al14O25: Eu2+, Dy3+, Bi3+ phosphors even at high Bismuth dopant concentrations of 12 mol%, suggesting that Bi ions are well incorporated into the host lattice. SEM micrographs show irregular micrograins with sizes in the range of 0.5–20 μm. The samples present an intense greenish‐blue fluorescence and persistent emissions at 495 nm, attributed to the 5d–4f allowed transitions of Eu2+. The fluorescence decreases as Bi concentration increases; that suggest bismuth‐induced traps formation that in turn quench the luminescence. The photocatalytic evaluation of the powders was studied under both 365 nm UV and solar irradiations. Sample with 12 mol% of Bi presented the best MB degradation activity; 310 min of solar irradiation allow 100% MB degradation, whereas only 62.49% MB degradation is achieved under UV irradiation. Our results suggest that codoping the persistent phosphors with Bi3+ can be an alternative to enhance their photocatalytic activity.  相似文献   

8.
长余辉发光材料的研究与应用,已有近100年的历史,目前仍在许多领域中有着重要应用。此类材料与其他光致发光材料具有相同的发光性能.只是更注重其发光的衰减过程和热释光性能。如.ZnS:Cu作为黄绿色的长余辉发光材料,在1992年以前是余辉性能最好的长余辉发光材料,一直处于发光研究工作的中心。  相似文献   

9.
Acceleration of protein decomposition from single- and mixed-protein solutions on the surface of Ti(IV)-doped calcium hydroxyapatite (TiHap) particles with a Ti/(Ca+Ti) atomic ratio (X Ti) of 0.10 and 0.20 under ultraviolet (UV) irradiation was investigated. The UV irradiation started immediately after dispersing the TiHap particles in protein solution in a quartz tube (0 h UV method). Lysozyme (LSZ) was steeply decomposed in a LSZ single system by the 0 h UV method. Furthermore, a selective photocatalytic decomposition of LSZ was observed on the mixed-protein system; i.e., only LSZ molecules were decomposed completely from the bovine serum albumin (BSA; 2.5 mg/cm3)???LSZ (1.0 mg/cm3) mixture using TiHap particles. The selective decomposition of pathogenic protein β2-microglobulin (β2-MG) from 20 μg/cm3 β2-MG???10 mg/cm3 BSA mixture in 1.5 mL?×?10?4 M KCl solution was also examined. The UV irradiation started at 24 h after dispersing TiHap particles in BSA–β2-MG-mixed solution for attaining the protein adsorption equilibrium (24 h UV method). It was revealed that β2-MG molecules were entirely destructed by the 24 h UV method by only irradiating UV light to the dispersions for 24 h. The obtained selective decomposition of β2-MG strongly suggested that TiHap particles can be applied for a blood purification therapy using UV irradiation.  相似文献   

10.
傅平丰  张彭义 《催化学报》2014,35(2):210-218
以Pt-TiO2为光催化剂,研究了气相甲醛分别在35 h连续UV254 nm光催化、O3强化UV254 nm(O3+UV254 nm)光催化和真空紫外(UV254+185 nm)光催化中的降解效率,考察了副产物O3的去除率,采用X射线光电子能谱(XPS)法分析Pt-TiO2在不同光催化前后Pt的电子态和累积有机产物,研究纳米Pt对甲醛降解和O3去除的强化机理. 连续光催化降解实验表明,以纳米Pt改性TiO2可以同时增强甲醛和O3的去除率,特别是O3的去除率可提高3.1-3.4倍. 对催化剂C 1s和O 1s峰分别经分峰拟合处理后,发现Pt-TiO2上累积的含羰基和羟基的有机物含量按以下顺序减少:UV254 nm光催化 > O3强化UV254 nm光催化 > 真空紫外光催化,而在连续35 h光催化降解过程中,催化剂的失活现象却按相反的方向变得越来越不明显. 负载的金属Pt在O3+UV254 nm和UV254+185nm光催化过程中被氧化成PtOads和Pt4+物种,而在UV254 nm光催化过程中金属Pt未被氧化,所以推测是气相中的O3和羟基自由基参与金属Pt的氧化过程. Pt-TiO2表面高价态的Pt氧化物种可作为光生电子捕获中心,强化光生载流子的分离过程,增强Pt-TiO2的光催化活性. Pt氧化物种可作为O3分解的活化中心,使Pt-TiO2对O3的分解效率远高于纯TiO2. 以XPS对比研究在三种不同光催化环境中Pt-TiO2表面性质,可以解释在UV254+185 nm光催化过程中纳米Pt对甲醛和O3同时去除的强化机理,并说明了催化剂不失活的内在原因.  相似文献   

11.
In this study, preparation of Sn and Nb co-doped TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of co-doping content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), field emission SEM (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy (XPS). XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania Rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The prepared co-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue (MB) solution under solar irradiation. Comparison with undoped and Sn or Nb-doped TiO2, codoped TiO2 shows an obviously higher catalytic activity under solar irradiation.  相似文献   

12.
基于微波水热法和微乳液法合成SnO2/TiO2纳米管复合光催化剂. 通过X射线衍射(XRD)、配有能量色散X射线光谱仪(EDX)的透射电镜(TEM)和电化学手段对光催化剂进行表征. 以甲苯为模型污染物,考察光催化剂在紫外光(UV)和真空远紫外光(VUV)下的性能及失活再生. 结果表明,SnO2/TiO2纳米管复合光催化剂形成三元异质结(锐钛矿相TiO2(A-TiO2)/金红石相TiO2(R-TiO2)、A-TiO2/SnO2和R-TiO2/SnO2异质结),促使光生电子-空穴对的有效分离,提高光催化活性. SnO2/TiO2表现出最佳的光催化性能,UV和VUV条件下的甲苯降解率均达100%,CO2生成速率(k2)均为P25的3倍左右. 但由于UV光照矿化能力不足,中间产物易在催化剂表面累积. 随着UV光照时间的增加,SnO2/TiO2逐渐失活,20 h 后k2由138.5 mg·m-3·h-1下降到76.1 mg·m-3·h-1. 利用VUV再生失活的SnO2/TiO2,过程中产生的·OH、O2、O(1D)、O(3P)、O3等活性物质可氧化吸附于催化剂活性位的难降解中间产物,使催化剂得以再生,12 h后k2恢复到143.6 mg·m-3·h-1. UV和VUV的协同效应使UV降解耦合VUV再生成为一种可持续的光催化降解污染物模式.  相似文献   

13.
A practicable synthesis method is explored to synthesize a europium porphyrin complex in which a water‐soluble positively charged 5,10,15,20‐tetrakis(4‐trimethylammoniophenyl)porphyrin iodide, H2TMePPI, is immobilized into the sol‐gel silica matrix and then in‐situ metallized with the Eu3+ ion. The product is characterized by means of the solid UV diffusion reflection spectra, fluorescence spectra, and thermal gravimetric analysis (TG). The solid UV diffusion reflection spectra show that the number of Q bands in the product is less than that of the H2TMePPI ligand, which is one of the important characteristics of porphyrin metallization. The fluorescence spectra of the product are different from that of the silica doped with free Eu3+ ions, implying the different function of Eu3+ ions in the product. The TG curves show that the thermal stability of the Eu(III)TMePPI entrapped into silica is higher than that of the H2TMePPI. The effect of a heat treatment and an UV‐light irradiation on the photoluminescence properties of the composite is investigated in details. The stronger interaction between Eu(III)TMePPI and SiO2 in the composite is responsible for the different spectra.  相似文献   

14.
This study aimed to investigate the tolerance of a melanized wild‐type strain of Aspergillus niger (CON1) and its light‐colored mutant (MUT1) to UV–C light and the concomitantly generated ozone. Treatments were segregated into four groups based on whether UV irradiation was used and the presence or absence of ozone: (?UV, ?O3), (?UV, +O3), (+UV, ?O3) and (+UV, +O3). The survival of CON1 and MUT1 conidia under +UV decreased as the exposure time increased, with CON1 showing greater resistance to UV irradiation than MUT1. Ozone induced CON1 conidium inactivation only under conditions of UV radiation exposure. While, the inactivation effect of ozone on MUT1 was always detectable regardless of the presence of UV irradiation. Furthermore, the CON1 conidial suspension showed lower UV light transmission than MUT1 when examined at the same concentration. Compared with the pigment in MUT1, the melanin in CON1 exhibited more potent radical‐scavenging activity and stronger UV absorbance. These results suggested that melanin protected A. niger against UV disinfection via UV screening and free radical scavenging. The process by which UV–C disinfection induces a continual decrease in conidial survival suggests that UV irradiation and ozone exert a synergistic fungicidal effect on A. niger prior to reaching a plateau.  相似文献   

15.
Incorporating high-energy ultraviolet (UV) photons into photothermal catalytic processes may enable photothermal-photochemical synergistic catalysis, which represents a transformative technology for waste plastic recycling. The major challenge is avoiding side reactions and by-products caused by these energetic photons. Here, we break through the limitation of the existing photothermal conversion mechanism and propose a photochromic-photothermal catalytic system based on polyol-ligated TiO2 nanocrystals. Upon UV or sunlight irradiation, the chemically bonded polyols can rapidly capture holes generated by TiO2, enabling photogenerated electrons to reduce Ti4+ to Ti3+ and produce oxygen vacancies. The resulting abundant defect energy levels boost sunlight-to-heat conversion efficiency, and simultaneously the oxygen vacancies facilitate polyester glycolysis by activating the nucleophilic addition-elimination process. As a result, compared to commercial TiO2 (P25), we achieve 6-fold and 12.2-fold performance enhancements under thermal and photothermal conditions, respectively, while maintaining high selectivity to high-valued monomers. This paradigm-shift strategy directs energetic UV photons for activating catalysts and avoids their interaction with reactants, opening the possibility of substantially elevating the efficiency of more solar-driven catalysis.  相似文献   

16.
Ti3+ and carbon co-doped TiO2 photocatalysts were prepared hydrothermally to introduce the carbon, and followed by simple vacuum activation to achieve the Ti3+ self-doping. The prepared co-doped photocatalysts were characterized by XRD, TEM, UV–Vis absorption spectra, EPR, and XPS. It was found that the co-doped TiO2 has dispersed nanoparticles and a narrower band-gap compared with the un-doped TiO2 and single-doped TiO2. The experimental results displayed that the coke carbon generated on the surface of co-doped TiO2 acts as a photosensitizer and has the photosensitization effect under solar light irradiation. Except for the carbon sensitization effect, the Ti3+ self-doping modification has a synergistic effect which is the reason for the effective photo-degradation of methyl orange under simulated solar light irradiation.  相似文献   

17.
无机光致变色材料在图像显示、光记录、信息存储和光转换方面有着巨大的潜在应用前景,引起了材料工作者的广泛重视[1 ̄3]。氧化钨是一种重要的无机光致变色材料,目前对氧化钨的研究多以无定  相似文献   

18.
Advanced Oxidation Processes (AOPs) for wastewater treatment are gaining more importance since biological treatment plants are often not sufficient for highly contaminated or toxic wastewaters. In order to find out the most efficient and cheap AOP, investigations were concentrated on methods that can use sunlight. The systems TiO2/UV, Fe2+/H2O2/UV (Photo-Fenton reaction), Fe2+/O2/UV and Fe2+/O3/UV were compared. Since the Photo-Fenton system was the most effective, pilot plant experiments with industrial wastewaters and sunlight experiments were carried out. Finally a rough cost estimate shows that Photo-Fenton treatment with sunlight is far cheaper than other available AOPs, namely ozonization.  相似文献   

19.
A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe2L3]4+ helicate exhibiting spin crossover (SCO). In solution, the compound [Fe2L3](ClO4)4 ( 1 ) preserves the magnetic properties and is fluorescent. The structure of 1 is photo‐switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light. This photoisomerization switches on and off some emission bands of 1 and provides a means of externally manipulating the magnetic properties of the assembly.  相似文献   

20.
A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe2L3]4+ helicate exhibiting spin crossover (SCO). In solution, the compound [Fe2L3](ClO4)4 ( 1 ) preserves the magnetic properties and is fluorescent. The structure of 1 is photo‐switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light. This photoisomerization switches on and off some emission bands of 1 and provides a means of externally manipulating the magnetic properties of the assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号