首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
In situ ellipsometry was used to study layer-by-layer film formation on hydrophilic and hydrophobized silica surfaces by alternating sequential adsorption of human mucin MUC5B and cationic proteins lysozyme, lactoferrin, lactoperoxidase or histatin 5, respectively. The stability of the multilayers was investigated by addition of sodium dodecyl sulfate solution (SDS). Atomic force microscopy was employed to investigate morphological structures on the surfaces during the layer-by-layer film build-up. It was clearly shown that, on both hydrophilic and hydrophobized silica, only MUC5B and lactoperoxidase showed the ability for multilayer formation, resulting in an approximately linear increase in adsorbed amount and film thickness with each deposition cycle. The net increase in amounts per cycle was larger on the hydrophilic silica. Further, MUC5B needs to be adsorbed first on the hydrophilic substrates to obtain this fast build-up behavior. Generally, addition of SDS solution showed that a large fraction of the adsorbed film could be desorbed. However, films on the hydrophobized silica were more resistant to surfactant elution. In conclusion, MUC5B-cationic protein multilayers can be formed on hydrophilic and hydrophobized silica, depending on the choice of the cationic protein as well as in which order the build-up is started on hydrophilic silica. Additionally, SDS disrupts the layer-by-layer film formed by MUC5B and lactoperoxidase.  相似文献   

2.
Ultrafiltration of either single protein solutions (lysozyme 14,300 g mol−1, pI=11; lactoferrin 80,000 g mol−1, pI=8–9) or mixed protein solution was performed with inorganic membranes (MMCO 300,000 g mol−1, pore radius 14 nm) chemically modified in order to bear either pyrophosphate (PP, anionic) or ethylenediamine (EDA, cationic) groups.The electrophoretic mobility of modified and unmodified zirconia particles fouled with proteins was similar whatever the grafted groups, meaning that the membrane surface was always made of adsorbed proteins during UF. In spite of that, for the UF of lysozyme/lactoferrin mixed solution, the maximum selectivity (S=lysozyme transmission/lactoferrin transmission=165) was observed with the EDA membrane and allowed an instantaneous purity of lysozyme in the permeate close to 100% to be achieved. Such high selectivitiy was mainly due to the negligible transmission of lactoferrin with the membrane modified with the EDA groups in the ionic strength range 0–100 mmol l−1 of NaCl at pH 7 (achieved either for mixed and single solutions).  相似文献   

3.
The efficiency of a pre-absorbed bovine serum albumin (BSA) layer in blocking the non-specific adsorption of different proteins on hydrophobic and hydrophilic surfaces was evaluated qualitatively and quantitatively using infrared reflection spectroscopy supported by spectral simulations. A BSA layer with a surface coverage of 35% of a close-packed monolayer exhibited a blocking efficiency of 90–100% on a hydrophobic and 68–100% on a hydrophilic surface, with respect to the non-specific adsorption of concanavalin A (Con A), immunoglobulin G (IgG), and staphylococcal protein A (SpA). This BSA layer was produced using a solution concentration of 1 mg/mL and 30 min incubation time. BSA layers that were adsorbed at conditions commonly employed for blocking (a 12 h incubation time and a solution concentration of 10 mg/mL) exhibited a blocking activity that involved competitive adsorption–desorption. This activity resulted from the formation of BSA–phosphate surface complexes, which correlated with the conformation of adsorbed BSA molecules that was favourable for blocking. The importance of optimisation of the adsorbed BSA layer for different surfaces and proteins to achieve efficient blocking was addressed in this study.  相似文献   

4.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

5.
The high energy X-ray reflectivity technique has been applied to study the interfacial structure of protein adsorbates and protein adsorption kinetics in situ. For this purpose, the adsorption of lysozyme at the hydrophilic silica-water interface has been chosen as a model system. The structure of adsorbed lysozyme layers was probed for various aqueous solution conditions. The effect of solution pH and lysozyme concentration on the interfacial structure was measured. Monolayer formation was observed for all cases except for the highest concentration. The adsorbed protein layers consist of adsorbed lysozyme molecules with side-on or end-on orientation. By means of time-dependent X-ray reflectivity scans, the time-evolution of adsorbed proteins was monitored as well. The results of this study demonstrate the capabilities of in situ X-ray reflectivity experiments on protein adsorbates. The great advantages of this method are the broad wave vector range available and the high time resolution.  相似文献   

6.
A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage.  相似文献   

7.
Hydrogen adsorption isotherms, evaluated by combination of cyclic voltammetry and chronoamperometry, are reported on Pt(1 1 1) and Pt(1 0 0) surfaces in 0.1 M HClO4. We found that at E > 0.05 V Pt(1 1 1) and Pt(1 0 0) are only partially covered by the adsorbed hydrogen (Had). On both surfaces, a full monolayer of the adsorbed hydrogen is completed at −0.1 V, i.e. the adsorption of atomic hydrogen is observed in the hydrogen evolution potential region. We also found, that the activity of the hydrogen oxidation reaction is mirrored by the shape of the hydrogen adsorption isotherms, implying that Had is in fact a spectator in the HOR.  相似文献   

8.
Adsorption of fibrinogen to the monolayers of mixed lipids, dipalmitoyl phosphatidyl choline (DPPC) and eicosylamine (EA) was measured at a surface pressure of 20 mN/m by an in situ surface plasmon resonance technique. Pressure–area isotherms of DPPC + EA mixtures on water and buffer subphases indicated good lipid miscibility and some contraction of the monolayers at intermediate and higher surface pressures. Surface electric potential of the DPPC + EA monolayers showed excess values for intermediate DPPC:EA ratios. Fibrinogen adsorption and its adsorption rates from a dilute solution (0.03 mg/ml) were proportional to the fraction of EA in the monolayer indicating that protein binding was primarily driven by electrostatic interactions between positive EA charges in the monolayer and a net negative protein charge. At a higher protein concentration (0.06 mg/ml) both the fibrinogen adsorbed amount and its maximum adsorption rate showed excess values relative to the pure EA for 1:1, 2:1 and 3:1 DPPC + EA monolayers. This excess adsorption could be explained, in part, by the contraction of the monolayers with intermediate DPPC:EA ratios which resulted in an excess surface electric potential.  相似文献   

9.
The adsorption of methanol on γ-irradiated and un-irradiated SiO2 surfaces pretreated at 473 K was investigated by Fourier transform infrared spectroscopy, temperature programmed desorption (TPD) and pulse methods. Methanol adsorbed only in molecular form on the un-irradiated sample. Treating the pre-irradiated silica surface with methanol at room temperature formaldehyde and hydrogen were formed. The methanol adsorbed on the irradiated silica transformed to formyl groups during a longer time at room temperature and desorbed as formaldehyde simultaneously with CH3OH (Tmax=395 K) on the TPD.  相似文献   

10.
The adsorption constant of aqueous solution of methylene blue (MB), (800 · 10−6 mol · dm3) on activated carbon (AC) has been investigated by means of UV–Visible spectroscopy. The adsorption process is very fast and is physical in nature; however, it is complicated by the factors inherent in the structures of both the MB solution and AC, such as tendency of MB to form molecular aggregates in solution. In this work, the effects of various experimental parameters such as temperature and ionic strength have been investigated, using a batch adsorption technique to obtain information on treating effluents from the dye industry. Utilizing the van’t Hoff relation, which describes the dependence of equilibrium constant on temperature, as a constraint, we determine the spectral responses of the free and adsorbed amounts, as well as the enthalpy of the adsorption equilibrium.  相似文献   

11.
Steam-activated carbons DS2 and DS5 were prepared by gasifying 600 °C-date pits carbonization products with steam at 950 °C to burn-off = 20 and 50%, respectively. The textural properties of these carbons were determined from the nitrogen adsorption at ?196 °C. The chemistry of the carbon surface was determined from the surface pH and from neutralization of the surface carbon–oxygen groups of basic and acidic type. The kinetic and equilibrium adsorption of MB and RY on DS2 and DS5 was determined at 27 and 37 °C and at initial sorption solution pH 3–7.DS2 and DS5 have expanded surface area, large total pore volume and contain both micro and mesoporosity. They have on their surface basic and acidic groups of different strength and functionality. This enhanced the sorption of the cationic dye (MB) and of the anionic dye (RY). The adsorption of MB and RY on DS2 and DS5 involves intraparticle diffusion and followed pseudo-second order kinetics. The adsorption isotherms were applicable to the Langmuir isotherm and high monolayer capacities for MB and RY dyes were evaluated indicating the high efficiencies of the carbons for dye adsorption.  相似文献   

12.
Quaternary ammonium surfactants are important ingredients that are frequently formulated into hair care products to modify the properties of hair surface. The adsorption kinetics, isotherms and association structures of cationic surfactants on hair surface, however, are not fully understood due to the heterogeneous nature of human hair fibers. In this work, a quaternary ammonium of surfactant, dimethylpabamidopropyl laurdimonium tosylate (DDABDT) was chosen as a probe to investigate the adsorption behavior of cationic surfactant on cuticles of scalp hair. The results reveal that the adsorption kinetics fit to a pseudo-second-order kinetic model and the adsorption isotherms fit to the Freundlich adsorption model. With the increase of DDABDT adsorption, the wettability of hair fibers changes from hydrophobic to hydrophilic. The association structure could be monolayer or bilayer depending on the initial concentration of the surfactant. In the monolayer structure, the ‘anchor’ surfactant molecules are believed to adsorb vertically on the surface of hair fibers through electrostatic interaction. In the bilayer structure, the second layer molecules may then pile up on top of the first layer with charged groups orienting outward. The thickness of DDABDT film on hair fibers treated with 5 × 10?4 mol/l DDABDT solution is measured to be 5.42 nm on average with a force–distance method. This figure is very close to the two times of the theoretical molecular size of the DDABDT molecule.  相似文献   

13.
In the present study, the surface poisoning of electrocatalytic monosaccharide oxidation reactions at gold electrodes were investigated. In the cyclic voltammetric studies, the electrocatalytic oxidation of aldohexose and aldopentose type monosaccharides, aminosugars, acetyl-glucosamine and glucronamide were observed at gold plate electrodes in alkaline medium. However, in controlled-potential electrolytic studies ranging −0.3 to −0.2 V in reaction solutions, current flows during electrolyses decreased quickly with time, except when glucosamine was used as a substrate.Results from surface enhanced infrared adsorption (SEIRA) spectroscopic measurements at an evaporated gold electrode for the electrocatalytic oxidation of glucose in 0.1 mol dm−3 NaOH at −0.3 V and Gaussian simulated spectra indicated that the gluconic acid as a 2-electron oxidation product and/or its analogs adsorbed onto the gold surface. Electrochemical quartz crystal microbalance (EQCM) measurement results, along with surface adsorption results from surface poisoning at the gold electrode during electrolytic reactions, suggested that gluconic acid and/or its analogs adsorbed vertically onto electrode surfaces in a full monolayer packing-like conformation. In the case of the electro oxidation of glucosamine in 0.1 mol dm−3 NaOH at −0.2 V, the obtained SEIRA spectra and EQCM results, clearly indicated that the glucosaminic acid as a 2-oxidation glucosamine product did not strongly bind onto the gold electrode surface.  相似文献   

14.
This study proposed that hybrid scrap cast iron particles (SIP)-aerobic biodegradation technology could enhance the biodegradability of toxic wastewater. SIP cleaved the azo linkages of Direct Green1 dye to form benzidine, 4-aminophenol, aniline and 1,2,7-triamino-8-hydroxynapthalene-3,6-disulfonic acid. SIP-mediated dye reduction was effective at wide pH range; however, kinetic analysis revealed fastest pseudo-first order dye reduction rate at acidic pH 3 (kd = 0.549 min−1) followed by pH 9 (kd = 0.383 min−1) and pH 7 (kd = 0.318 min−1). The daughter aromatic amines produced were partially adsorbed onto the SIP surface and maximally at neutral pH. The adsorption process followed pseudo-second order adsorption kinetics and Langmuir isotherm. Benzidine was adsorbed more than 4-aminophenol and aniline. BOD5 of the SIP-treated effluent increased from 0.93 to 12 mg/L showing improved biodegradability. The daughter amines were rapidly mineralized in the aerobic bioreactor within 6 h. Cost-effective SIP pre-treatment could accelerate mineralization and detoxification of recalcitrant wastewater.  相似文献   

15.
Bulk CO oxidation experiments have been carried out in sulphuric and perchloric acid solutions on Pt(1 1 1) and Pt(1 1 0) electrodes under hanging meniscus rotating disk electrode (HMRDE) configuration. The comparison between the two different electrolytic media reveals an important influence of the anion in the oxidation kinetics. Once the adsorbed CO layer has been oxidized after the ignition peak, anions are re-adsorbed on the electrode surface and the presence of these anions affects the stationary currents measured at positive potentials. In the negative-going sweep, adsorbed anions are displaced from the surface when the CO oxidation rate is lower than the corresponding CO adsorption rate. The charge associated to this displacement has been measured at high scan rates and is in agreement with that expected from the CO displacement experiments performed at low potentials.  相似文献   

16.
The adsorption of benzene from benzene/n-alkane mixtures was studied by two types of nano Beta zeolite with Si/Al ratios of 11.5 and 24.5. Benzene was adsorbed into benzene/n-hexane and n-heptane mixtures which had 0.5% up to 10% mole fraction of benzene using batch technique in the ambient temperature. The nano Beta zeolite has active sites on its surface, which have interaction with π electron in benzene, and this can increase the heat of adsorption. The Si/Al ratio defines the number of active sites in the zeolite surface and the heat of adsorption. However, an increase in the active sites of Beta zeolite declines the entropy of adsorption. Therefore, free energy of mixing specifies the potential of adsorption in Beta zeolite.As the results indicated in all mixtures, benzene is adsorbed more than n-hexane and n-heptane into the Beta zeolite surface, which suggests that this type of zeolite has a high separation factor (∼50) for benzene in Beta zeolite (Si/Al = 24.5). Also, Beta zeolite with Si/Al = 24.5 had a greater separation factor than Beta zeolite with Si/Al = 11.5 in similar mixtures.  相似文献   

17.
A kind of nanocomposite with good dispersion in water was prepared through noncovalent adsorption of iron picket-fence porphyrin (FeTMAPP), iron-5,10,15,20-tetrakis[αααα-2-trismethylammoniomethyl-phenyl]porphyrin, on multiwalled carbon nanotubes (MWNTs). UV–visible spectroscopic and electrochemical methods were used to characterize the nanocomposite. A gold nanoparticles/nanocomposite self-assembled monolayer was formed on gold electrode and showed highly synergetic behavior towards the electrocatalytic reduction of O2 with a decrease of overpotential of 200 mV. FeTMAPP acted as the catalytic active center, and MWNTs increased the amount of FeTMAPP adsorbed and accelerated the electron transfer between FeTMAPP and electrode. The resulting biosensor exhibited good response to oxygen with a linear range from 0.52 to 180 μM and a detection limit of 0.38 μM, without the interference of ascorbic acid and uric acid, which showed an application potential of the proposed nanocomposite and monolayer in detection of dissolved oxygen and oxidase substrates.  相似文献   

18.
A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N′-methylenebisacrylamide as a cross-linking agent using K2S2O8/Na2S2O3 initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (Ea) and enthalpy (ΔH#), entropy (ΔS#) and free energy (ΔG#) of activation for the adsorption process. The value of Ea for adsorption was found to be 10.84 kJ · mol?1 and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 · 10 mg · g?1 at T = 303 K. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.  相似文献   

19.
《Comptes Rendus Chimie》2014,17(7-8):824-831
In this study, the adsorption and photocatalytic degradation of isoproturon (one of the most widely used herbicides in agriculture) was investigated in an annular photoreactor packed with a TiO2 photocatalyst. The results highlighted that the monolayer Langmuir adsorption isotherm model was well obeyed. The isoproturon adsorption equilibrium constant was determined experimentally. The codegradation of isoproturon and of other copollutants such as salicylic acid and phenol occurred, demonstrating that within the catalyst, the same type of sites can be involved in the adsorption of the two pollutants. The heat of adsorption fell in the range of 20 to 50 °C and was found to be ∼43 kJ/mol. As expected, the adsorption constant Ka decreased with increasing the fluid flow due to the temperature rise. The kinetics of the photocatalytic degradation of isoproturon revealed a first-order reaction for initial concentrations between 3 and 43 ppm. In our experimental conditions, no by-products were detected and total disappearance of isoproturon was observed.  相似文献   

20.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号