首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen adsorption isotherms, evaluated by combination of cyclic voltammetry and chronoamperometry, are reported on Pt(1 1 1) and Pt(1 0 0) surfaces in 0.1 M HClO4. We found that at E > 0.05 V Pt(1 1 1) and Pt(1 0 0) are only partially covered by the adsorbed hydrogen (Had). On both surfaces, a full monolayer of the adsorbed hydrogen is completed at −0.1 V, i.e. the adsorption of atomic hydrogen is observed in the hydrogen evolution potential region. We also found, that the activity of the hydrogen oxidation reaction is mirrored by the shape of the hydrogen adsorption isotherms, implying that Had is in fact a spectator in the HOR.  相似文献   

2.
Aqua cultured fish (sea bream) were irradiated by Cobalt-60 at commercial irradiation facility at dose of 2.5 and 5 kGy at 2–4 °C. The proximate composition, fatty acid and amino acid composition changes of irradiated aqua cultured sea bream (Sparus aurata) of Aegean Sea were investigated. Total saturated (28.01%) and total monounsaturated (28.42%) fatty acid contents of non-irradiated decreased content of 27.69–27.97% for 2.5 kGy irradiated groups and increased content of 28.33–28.56% for 5 kGy irradiated groups after irradiation process. Total polyunsaturated fatty acid content for irradiated samples was lower than that of non-irradiated samples. Aspartic acid, glutamic acid, serine, glycine, arginine, alanine, tyrosine, cystine, tryptophan, lysine and proline contents for 2.5 and 5 kGy irradiated sea bream are significantly different (p<0.05).  相似文献   

3.
According to most of works in the literature, adsorbed carbon monoxide at Pt(1 1 0) electrodes in acid media presents only linear bonded (COL) so-called, atop geometry. In the present work, the formation of bridge bonded carbon monoxide (COB) is shown via in situ infrared FT spectra, measured on a Pt(1 1 0) electrode covered with 25% CO, in HClO4 solutions. For the first time, the inter conversion between atop and bridge bonded CO at potentials in the hydrogen adsorption region is reported in acid solution. Band intensity and band center frequency indicate dipole–dipole coupling effects in spite of the low CO total coverage.  相似文献   

4.
The adsorption of benzene from benzene/n-alkane mixtures was studied by two types of nano Beta zeolite with Si/Al ratios of 11.5 and 24.5. Benzene was adsorbed into benzene/n-hexane and n-heptane mixtures which had 0.5% up to 10% mole fraction of benzene using batch technique in the ambient temperature. The nano Beta zeolite has active sites on its surface, which have interaction with π electron in benzene, and this can increase the heat of adsorption. The Si/Al ratio defines the number of active sites in the zeolite surface and the heat of adsorption. However, an increase in the active sites of Beta zeolite declines the entropy of adsorption. Therefore, free energy of mixing specifies the potential of adsorption in Beta zeolite.As the results indicated in all mixtures, benzene is adsorbed more than n-hexane and n-heptane into the Beta zeolite surface, which suggests that this type of zeolite has a high separation factor (∼50) for benzene in Beta zeolite (Si/Al = 24.5). Also, Beta zeolite with Si/Al = 24.5 had a greater separation factor than Beta zeolite with Si/Al = 11.5 in similar mixtures.  相似文献   

5.
Poly (vinyl alcohol – aniline) PVAA composite was tested for its performance in protecting mild steel MS against corrosion in 1 M HCl. The inhibitive parameters were evaluated by means of weight loss, electrochemical polarization and impedance methods. Results indicated that the addition of PVAA to the acid reduces the corrosion of the metal. Inhibition efficiency increases with increase in inhibitor concentration. The results further revealed that PVAA at a concentration of 2000 ppm furnishes a maximum of 92% inhibition efficiency. Thermodynamic parameters such as free energy of adsorption, heat of adsorption, etc., had been evaluated from temperature studies. The adsorption of PVAA followed Langmuir and Temkin adsorption isotherms. Polarization curves revealed that PVAA is a mixed inhibitor.  相似文献   

6.
The separations of amino acids by Donnan dialysis using an ion-exchange membrane were studied. Donnan dialytic experiments were carried out using an anion-exchange membrane, glutamic acid–phenylalanine or glutamic acid–alanine mixed solutions as the feeds, and sodium hydroxide solutions as the stripping ones. The initial concentrations of the two kinds of amino acids in the feed solutions were equal and in the range of 0.5–50 mol m−3. The amino acid fluxes were measured for each feed solution. Above the feed concentration of 10 mol m−3, the glutamic acid flux was over 100 times greater than that of the other amino acid, and it was found that the Donnan dialysis was applicable to the separation of the amino acids. On the other hand, below 10 mol m−3, the amino acid fluxes varied in a complicated manner with the concentration, and below 1 mol m−3 there was little difference between the fluxes of the two amino acids.Furthermore, after soaking the membrane in solutions having the same concentrations as the feed in the Donnan dialysis, uptake of the amino acids into the membrane was also measured. By comparing the experimental results of both the flux and uptake of the amino acids, the reason why the flux varied in a complicated manner with the concentration was discussed.  相似文献   

7.
Adsorption of the cationic salivary proteins lactoferrin, lactoperoxidase, lysozyme and histatin 5 to pure (hydrophilic) and methylated (hydrophobized) silica surfaces was investigated by in situ ellipsometry. Effects of concentration (≤10 μg ml−1, for lysozyme ≤200 μg ml−1) and dependence of surface wettability, as well as adsorption kinetics and elutability of adsorbed films by buffer and sodium dodecyl sulphate (SDS) solutions were investigated. Results showed that the amounts adsorbed decreased in the order lactoferrin  lactoperoxidase > lysozyme  histatin 5. On hydrophilic silica, the adsorption was most likely driven by electrostatic interactions, which resulted in adsorbed amounts of lactoferrin that indicated the formation of a monolayer with both side-on and end-on adsorbed molecules. For lactoperoxidase the adsorbed amounts were somewhat higher than an end-on monolayer, lysozyme adsorption showed amounts corresponding to a side-on monolayer, and histatin 5 displayed adsorbed amounts in the range of a side-on monolayer. On hydrophobized substrata, the adsorption was also mediated by hydrophobic interactions, which resulted in lower adsorbed amounts of lactoferrin and lactoperoxidase; closer to side-on monolayer coverage. For both lysozyme and histatin 5 the adsorbed amounts were the same as on the hydrophilic silica. The investigated proteins exhibited fast adsorption kinetics, and the initial kinetics indicated mass transport controlled behaviour at low concentrations on both types of substrates. Buffer rinsing and SDS elution indicated that the proteins in general were more tightly bound to the hydrophobized surface compared to hydrophilic silica. Overall, the surface activity of the investigated proteins implicates their importance in the salivary film formation.  相似文献   

8.
Synthesis and physico-chemical characterization of a pure magnesium phosphate (MgP) prepared by coprecipitation, and MgP modified by introduction of cobalt–molybdenum (4–12 wt.% of MoO3 with the Co/Mo ratio fixed at 0.5) have been carried out. The structural properties of these catalysts were characterized by X-ray diffraction, their textural properties were determined by N2 adsorption–desorption isotherms and the dispersion of cobalt–molybdenum was studied by XPS spectroscopy. Their acid properties have been investigated by in situ FT-IR spectroscopy of adsorbed molecules, often, 2,6-dimethylpyridine (pKa = 6.7), pyridine (pKa = 5.3). Co–Mo incorporation leads to a modification in the MgP acid–base properties, especially on the acid sites type and number. Thus, lower loading of cobalt–molybdenum species decreased the number of strong Lewis acid sites whereas higher loading increased it. It was found that Lewis acid sites on magnesium phosphates play an important role in the isomerization of 3,3-dimethylbut-1-ene.The 3,3-dimethylbut-1-ene (33DMB1) conversion increases with the reaction temperature from 493 to 653 K for MgP, but decreases after 573 K for MgP supported by Co–Mo. A linear relationship between both types of acid sites and conversion values was found. The deactivation of the catalysts appears at high reaction temperature (>573 K).  相似文献   

9.
The effect of glycine, dl-alanine and dl-2-aminobutyric acid on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter.Densities of aqueous solutions were measured within the temperature range from T = (275.65 to 278.65) K at intervals of T = 0.50 K over the concentration range between (0.0300 and 0.1000) mol · kg−1. A linear relationship between density and concentration was obtained for all the systems in the temperature range considered.The temperature of maximum density was determined from the experimental results. The effect of the three amino acids is to decrease the temperature of maximum density of water and the decrease is proportional to molality according to Despretz equation. The effect of the amino acids on the temperature of maximum density decreases as the number of methylene groups of the alkyl chain becomes larger. The results are discussed in terms of (solute + water) interactions and the effect of amino acids on water structure.  相似文献   

10.
《Progress in Surface Science》2006,81(8-9):337-366
Recent progress on desorption and adsorption dynamics of hydrogen (deuterium) on monohydride and dihydride Si(1 0 0) surfaces is reviewed and discussed. The dynamics experiments reveal that the desorption dynamics of hydrogen is well related to the adsorption dynamics via detailed balance. Dependence of time-of-flight (TOF) distributions of desorbed molecules on H(D) coverage is noticed to be important in understanding the kinetics mechanism of the adsorption/desorption reactions of hydrogen on the Si(1 0 0) surface. The desorption dynamics varies from the situation of strongly translational heating to the other situation of less translational heating with D coverage. This trend seems to be consistent with the 2H/3H/4H interdimer mechanism. However, despites by far the richest 4H configuration at high H coverage, the 2H desorption prevails over the 4H desorption already at 0.8 ML. To reconcile this unexpected desorption kinetics, a diffusion-promoted desorption mechanism is proposed. Height of the adsorption barriers for the 2H and 3H pathways could be reduced by the H-atom diffusion along the Si dimer rows, but that for the 4H pathway could not be the case because of no capability of diffusion on the H saturated surface. The desorption dynamics of hydrogen from the (3 × 1) dihydride surface is also reviewed and compared with the case on the monohydride surface. The sticking coefficients of hydrogen molecules onto the monohydride surfaces are evaluated from the TOF curves and found to be strongly activated by the kinetic energy. Not only the degrees of freedom of the molecules but also the vibrational degrees of freedom of substrate Si atoms determine the barrier height for adsorption. The desorption dynamics of hydrogen from the monohydride and dihydride surfaces appears to be quite similar, but the dynamics of substrate Si atoms is expected to be quite dissimilar between the two desorption pathways.  相似文献   

11.
In this paper mesoporous platinum microeletrodes (Pt-ME) modified with submonolayers of adsorbed bismuth (Bi-PtME) were prepared and characterised by cyclic voltammetry (CV). The mesoporous platinum films were electrodeposited from hexachloroplatinic acid dissolved in the aqueous domain of the lyotropic liquid crystalline phase of Brij 78®, to form metal films with hexagonal arrays of nanometer-sized channels. Bismuth deposition was performed by different procedures involving either the spontaneous adsorption of bismuth onto the Pt surface from Bi3+ solutions, or by under potential deposition (UPD) of bismuth from Bi3+ solutions, by cycling the potential over an useful range, or applying a constant potential for a given time. The latter procedures provided high bismuth coverage (θBi), whereas only small amounts of bismuth could be adsorbed from the simple immersion of the Pt-ME at open circuit. The coverage by irreversibly adsorbed bismuth was checked in a 0.5 M H2SO4 solution free of Bi3+ ions and exploiting the charge involved in the hydrogen adsorption/desorption, which decreased in proportion to the amount of platinum sites covered by bismuth. The ability of the prepared Bi-PtME towards the oxidation of formic acid was also investigated. It was found that Bi-PtME with θBi = 0.6 provided stationary voltammograms characterised by a low hysteresis between the anodic and cathodic scans. The onset of the waves resulted shifted by about 150 mV towards less positive potentials with respect to that of the corresponding Pt-ME. At 0.1 M HCOOH current densities of about 70 mA cm−2 were achieved. These results were discussed in terms of high tolerance towards the intermediate poisons of the Bi-PtME investigated here. Bi-PtME with much lower real surface area and bismuth coverage displayed both lower catalytic activity and tolerance to poisons.  相似文献   

12.
Sorption isotherms of water vapour on commercial bentonite clay are determined at T = (303, 323, and 343) K. The sorption isotherms have a sigmoid shape (Type II). At a given water activity, moisture content decreases with increasing temperature. Hysteresis between adsorption and desorption isotherms is shown over most the range of water activity varying from 0.1 to 0.9. The fitting of the experimental data by using two theoretical models (Guggenheim–Anderson–DeBoer (GAB) and Henderson) shows that the two models reproduce experimental data with acceptable accuracy. The GAB model, however, is largely superior. The isosteric sorption enthalpy is determined and its dependency on the amount of water retention is investigated. It is found that the enthalpy reaches a maximum value when a monolayer of water covers the adsorbant surface. The enthalpy decreases asymptotically to a finite value when the amount of adsorbed water increases.  相似文献   

13.
Amino acid ionic liquids (AAILs) have huge potential in the field of protein chemistry, enzymatic reactions, templates for synthetic study etc. which is due to their distinctive properties like unique acid-base characteristics, tunable hydrophobicity, hydrogen bonding ability and strong hydration effects. To explore the field of bio-ionic liquids for its real life applications and sustainable technology development, it is essential to have better understanding of these newly researched liquid salts in life’s most chosen medium, i.e. in aqueous medium, through study of their physicochemical properties in aqueous solutions. In this context, we are reporting herewith measurements and analysis of volumetric properties in the temperature range of (293.15 to 313.25) K and acoustic properties at 298.15 K in the concentration range of (0.05 to 0.5) mol · kg−1 for aqueous solutions of 1-butyl-3-methylimidazolium [Bmim] based amino acid ionic liquids, prepared from glycine, l-alanine, l-valine, l-leucine and l-isoleucine. The experimental density and sound speed data were used to obtain apparent, partial and limiting molar volumes as well as isentropic and isothermal compressibility properties. These data have been further used to understand electrostriction as well as concentration dependence of internal pressure. The hydration numbers for AAILs in aqueous medium were estimated from compressibility data using Passynski method and the estimated ionic hydration numbers are compared with those obtained using activity data. The results are explained in terms of cooperative hydration effects, hydrophobic interactions, kosmotropic behavior of AAILs, etc.  相似文献   

14.
The adsorption of methanol on γ-irradiated and un-irradiated SiO2 surfaces pretreated at 473 K was investigated by Fourier transform infrared spectroscopy, temperature programmed desorption (TPD) and pulse methods. Methanol adsorbed only in molecular form on the un-irradiated sample. Treating the pre-irradiated silica surface with methanol at room temperature formaldehyde and hydrogen were formed. The methanol adsorbed on the irradiated silica transformed to formyl groups during a longer time at room temperature and desorbed as formaldehyde simultaneously with CH3OH (Tmax=395 K) on the TPD.  相似文献   

15.
The efficiency of a pre-absorbed bovine serum albumin (BSA) layer in blocking the non-specific adsorption of different proteins on hydrophobic and hydrophilic surfaces was evaluated qualitatively and quantitatively using infrared reflection spectroscopy supported by spectral simulations. A BSA layer with a surface coverage of 35% of a close-packed monolayer exhibited a blocking efficiency of 90–100% on a hydrophobic and 68–100% on a hydrophilic surface, with respect to the non-specific adsorption of concanavalin A (Con A), immunoglobulin G (IgG), and staphylococcal protein A (SpA). This BSA layer was produced using a solution concentration of 1 mg/mL and 30 min incubation time. BSA layers that were adsorbed at conditions commonly employed for blocking (a 12 h incubation time and a solution concentration of 10 mg/mL) exhibited a blocking activity that involved competitive adsorption–desorption. This activity resulted from the formation of BSA–phosphate surface complexes, which correlated with the conformation of adsorbed BSA molecules that was favourable for blocking. The importance of optimisation of the adsorbed BSA layer for different surfaces and proteins to achieve efficient blocking was addressed in this study.  相似文献   

16.
A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N′-methylenebisacrylamide as a cross-linking agent using K2S2O8/Na2S2O3 initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (Ea) and enthalpy (ΔH#), entropy (ΔS#) and free energy (ΔG#) of activation for the adsorption process. The value of Ea for adsorption was found to be 10.84 kJ · mol?1 and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 · 10 mg · g?1 at T = 303 K. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.  相似文献   

17.
Adsorption of fibrinogen to the monolayers of mixed lipids, dipalmitoyl phosphatidyl choline (DPPC) and eicosylamine (EA) was measured at a surface pressure of 20 mN/m by an in situ surface plasmon resonance technique. Pressure–area isotherms of DPPC + EA mixtures on water and buffer subphases indicated good lipid miscibility and some contraction of the monolayers at intermediate and higher surface pressures. Surface electric potential of the DPPC + EA monolayers showed excess values for intermediate DPPC:EA ratios. Fibrinogen adsorption and its adsorption rates from a dilute solution (0.03 mg/ml) were proportional to the fraction of EA in the monolayer indicating that protein binding was primarily driven by electrostatic interactions between positive EA charges in the monolayer and a net negative protein charge. At a higher protein concentration (0.06 mg/ml) both the fibrinogen adsorbed amount and its maximum adsorption rate showed excess values relative to the pure EA for 1:1, 2:1 and 3:1 DPPC + EA monolayers. This excess adsorption could be explained, in part, by the contraction of the monolayers with intermediate DPPC:EA ratios which resulted in an excess surface electric potential.  相似文献   

18.
《Fluid Phase Equilibria》2005,227(1):87-96
Liquid–liquid equilibrium data of the solubility (binodal) curves and tie-line end compositions are presented for mixtures of [water (1) + formic acid or propanoic acid or levulinic (4-oxopentanoic) acid or valeric (pentanoic) acid or caproic (hexanoic) acid (2) + 1-octanol (3)] at 293.15 K and 101.3 ± 0.7 kPa. A log-basis approach SERLAS (solvation energy relation for liquid associated system) has been proposed to estimate the properties and liquid–liquid equilibria (LLE) of tertiary associated systems containing proton-donating and -accepting components capable of a physical interaction through hydrogen bonding. The model combines the solvatochromic parameters with the thermodynamic factors derived from the UNIFAC-Dortmund model. The reliability of the model has been analyzed against the LLE data with respect to the distribution ratio and separation factor. The tie-lines were also correlated using the UNIFAC-original model. The proposed model, reflecting the simultaneous impact of hydrogen bonding, solubility and thermodynamic factors, yields a mean error of 27.9% for all the systems considered.  相似文献   

19.
《Comptes Rendus Chimie》2014,17(7-8):869-880
An organic–inorganic hybrid mesoporous silica was synthesized via post-grafting of KIT-6 with 4-(triethoxysilyl)butyronitrile. All samples were characterized using their N2 adsorption–desorption isotherms, XRD, FT–IR, TEM, SEM, and PT. The adsorption potential of this material for removing Pb(II) from aqueous solutions was investigated via the batch technique, and the effects of pH and contact time were studied. Experimental data showed that the maximum Pb(II) adsorption, 76%, occurred in the pH range around 6. The adsorption equilibrium was reached within 40 min for 10 wt.%COOH/KIT-6. The adsorption data were fitted using the Langmuir and Freundlich isotherms, and the obtained modeling equilibrium adsorption data suggested that the 10 wt.%COOH/KIT-6 sample contained homogeneous adsorption sites that fit the Langmuir adsorption model well. The pseudo-second-order model described well the 10 wt.%COOH/KIT-6 adsorption process. The desorption and regeneration experiments indicated that ≈95% of the metal desorbed and the adsorbent could be regenerated via an acid treatment without altering its properties.  相似文献   

20.
Enthalpies of solution of methanol and 2-methyl-2-propanol (tert-butanol) in pyridine and its methyl derivatives were investigated in the range of mole fractions of alcohol x⩽0.02 at temperature 298.15 K by a titration calorimeter. Dissolution of methanol is an exothermic process, with heat effects very close to those for water reported in part I of this study. The negative enthalpy of solution increases in the following order: pyridine < 3-methylpyridine < 4-methylpyridine < 2-methylpyridine < 2,6-dimethylpyridine < 2,4,6-trimethylpyridine. Positive enthalpies of solution of 2-methyl-2-propanol increase as follows: 2-methylpyridine < 2,4,6-trimethylpyridine < 4-methylpyridine < 2,6-dimethylpyridine < 3-methylpyridine < pyridine. The propensity of pyridine derivatives to hydrogen bonding is enhanced by the ortho effect. Methyl groups are probably too small to prevent the nitrogen atom in the pyridine ring from hydrogen bonding. However, spacious hydrocarbon group in 2-methyl-2-propanol molecule makes the bonding difficult for 2,6-dimethylpyridine and 2,4,6-trimethylpyridine, thus the number of O–H⋯N bonds is smaller than that in the solutions of methanol or water. The two latter seem to be very close to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号