首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New Thiophosphates: The Compounds Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) and Ag3Y(PS4)2 The new thiophosphates Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) were synthesized by heating mixtures of Ln, P, S, and Li2S4 at 900 °C (100 h) and they were investigated by single crystal X‐ray methods. The compounds with Ln = Y (a = 28.390(2), b = 10.068(1), c = 33.715(2) Å, β = 113.85(1)°), Gd (a = 28.327(2), b = 10.074(1), c = 33.822(2) Å, β = 114.297(7)°), Dy (a = 28.124(6), b = 10.003(2), c = 33.486(7) Å, β = 113.89(3)°), Yb (a = 28.178(3), b = 9.977(1), c = 33.392(4) Å, β = 113.65(1)°), and Lu (a = 28.169(6), b = 10.002(2), c = 33.432(7) Å, β = 113.54(3)°) are isotypic and crystallize in a new structure type (C2/c; Z = 12). Main feature are PS4 tetrahedra isolated from each other surrounding the Ln and Li atoms via their S atoms. The coordination number of the five crystallographically independent Ln atoms is eight, but the polyhedra are quite different and they are interlinked to larger units extending in [010]. The environment of the Li atoms is irregular and formed by five to six S atoms. The crystal structure is compared with that of Li9Ln2(PS4)5 (Ln: Nd, Gd). For the synthesis of Ag3Y(PS4)2 (a = 16.874(3), b = 9.190(2), c = 9.312(2) Å, β = 123.17(3)°) a mixture of Y, P, S, and Ag2S was heated to 700 °C (50 h). The thiophosphate crystallizes in a new structure type (C2/c; Z = 4) composed of isolated PS4 tetrahedra. The two crystallographically independent Ag atoms are surrounded by four S atoms in the shape of distorted tetrahedra. The Ag(1)S4 polyhedra are cornershared to strands running along [001], which are linked together via Ag(2)S4 tetrahedra. The environment of the Y atoms is composed of eight S atoms each building distorted square antiprisms. These polyhedra are connected with each other via common edges to a strand running along [001].  相似文献   

2.
Motifs of Closest Packings: The Compounds Zn3(PS4)2 and LiZnPS4 The crystal structure of Zn3(PS4)2 was determined by single crystal X‐ray methods. The compound crystallizes tetragonally (Pn2; a = 7.823(1), c = 9.053(1)Å; Z = 2) with a new structure type built up by corner‐sharing ZnS4 tetrahedra, which form two‐dimensional layers. Between them the P atoms are coordinated likewise tetrahedrally by sulfur. The PS4 tetrahedra are arranged according to the motif of the cubic closest packing with zinc in three quarters of the tetrahedral voids. LiZnPS4 (I4¯; a = 5.738(1), c = 8.914(1)Å; Z = 2) was synthesized by heating the elements at 400 °C. In comparison with Zn3(PS4)2 one Zn atom is replaced by two Li atoms. The metal atoms are located in the centres of the sulfur tetrahedra in such a way that the unit cell volume is only about half that of the zinc compound. In this packing of the PS4 units all the tetrahedral voids are occupied by lithium and zinc atoms. Chemical bonding in LiZnPS4 is discussed by means of the electron localization function ELF.  相似文献   

3.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

4.
The metal thiophosphates Rb2AgPS4 ( 2 ), RbAg5(PS4)2 ( 3 ), and Rb3Ag9(PS4)4 ( 4 ) were synthesized by stoichiometric reactions, whereas Rb6(PS5)(P2S10) ( 1 ) was prepared with excess amount of sulfur. The compounds crystallize as follows: 1 monoclinic, P21/c (no. 14), a = 17.0123(7) Å, b = 6.9102(2) Å, c = 23.179(1) Å, β = 94.399(4)°; 2 triclinic, P$\bar{1}$ (no. 2), a = 6.600(1) Å, b = 6.856(1) Å, c = 10.943(3) Å, α = 95.150(2)°, β = 107.338(2)°, γ = 111.383(2)°; 3 orthorhombic, Pbca (no. 61), a = 12.607(1) Å, b = 12.612(1) Å, c = 17.759(2) Å; 4 orthorhombic, Pbcm (no. 57), a = 6.3481(2) Å, b = 12.5782(4) Å, c = 35.975(1) Å. The crystal structures contain discrete units, chains, and 3D polyanionic frameworks composed of PS4 tetrahedral units arranged and connected in different manner. Compounds 1 – 3 melt congruently, whereas incongruent melting behavior was observed for compound 4 . 1 – 4 are semiconductors with bandgaps between 2.3 and 2.6 eV and thermally stable up to 450 °C in an inert atmosphere.  相似文献   

5.
Sheets of La6(C2) Octahedra in Lanthanum Carbide Chlorides – undulated and plane The reaction of Ln, LnCl3 (Ln = La, Ce) and C yields the hitherto unknown compounds La8(C2)4Cl5, Ce8(C2)4Cl5, La14(C2)7Cl9, La20(C2)10Cl13, La22(C2)11Cl14, La36(C2)18Cl23 and La2(C2)Cl. The gold‐ resp. bronze‐coloured metallic compounds are sensitive to moisture. The reaction temperatures are 1030 °C, 1000 °C, 970 °C, 1020 °C, 1020 °C, 1080 °C and 1030 °C in the order of compounds given, which mostly crystallize in the monoclinic space group P21/c with a = 7.756(1) Å, b = 16.951(1) Å, c = 6.878(1) Å, β = 104.20(1)° (La8(C2)4Cl5), a = 7.669(2) Å, b = 16.784(3) Å, c = 6.798(1) Å, β = 104.05(1)° (Ce8(C2)4Cl5), a = 7.669(2) Å, b = 16.784(3) Å, c = 6.789(1) Å, β = 104.05(3)° (La20(C2)10Cl13), a = 7.770(2) Å, b = 47.038(9) Å, c = 6.901(1) Å, β = 104.28(3)° (La22(C2)11Cl14) and a = 7.764(2) Å, b = 77.055(15) Å, c = 6.897(1) Å, β = 104.26(3)° (La36(C2)18Cl23), respectively. La14(C2)7Cl9‐(II) crystallizes in Pc with a = 7.775(2) Å, b = 29.963(6) Å, c = 6.895(1) Å, β = 104.21(3)° and La2(C2)Cl in C2/c with a = 14.770(2) Å, b = 4.187(1) Å, c = 6.802(1) Å, β = 101.50(3)°. The crystal structures are composed of distorted C2 centered La‐octahedra which are condensed into chains via common edges. Three and four such chains join into ribbons, and these are connected into undulated layers with Cl atoms between them. The variations of the structure principle are analyzed systematically.  相似文献   

6.
Two polymorphs of a zero‐dimensional (molecular) zinc phosphate with the formula [Zn(2,2′‐bipy)(H2PO4)2]2 have been synthesized by a mild hydrothermal route and their crystal structures were determined by single crystal X‐ray diffraction (triclinic, space group (No. 2), Z = 2, α‐form: a = 8.664(1), b = 8.849(2), c = 10.113(2) Å, α = 97.37(2)°, β = 100.54(2)°, γ = 100.98(2)°, V = 737.5(3) Å3; β‐form: a = 7.5446(15), b = 10.450(2), c = 10.750(2) Å, α = 67.32(3)°, β = 81.67(3)°, γ = 69.29(3)°, V = 731.4(3) Å3). Both structures consist of distorted trigonal‐bipyramidal ZnO3N2 units condensed with PO2(OH)2 tetrahedra through common vertices giving rise to dimers [Zn(2,2′‐bipy)(H2PO4)2]2. The structures are stabilized by extensive inter‐ and intramolecular hydrogen bond interactions. Both modifications display subtle differences in their packing originating from the hydrogen bond interactions as well as π…π interactions between the organic ligands.  相似文献   

7.
The three-dimensional SiP4 network in the known phosphidosilicate Ba2SiP4-tI28 is analogous to β-Cristobalite if oxygen is formally replaced by P–P dimers. Here we report a second polymorph Ba2SiP4-oP56 [Pnma, a = 12.3710(4) Å, b = 14.6296(7) Å, c = 7.9783(3) Å; Z = 8] with chains of SiP4 tetrahedra connected by P–P bonds, reminiscent to the elusive fibrous SiO2. Ba2SiP4 is enantiotropic. The high temperature polymorph Ba2SiP4-oP56 transforms to the low-temperature phase Ba2SiP4-tI28 at 650 °C and reconstructs to the high-temperature modification at 1100 °C. DFT calculations predict an indirect optical bandgap of about 1.7 eV.  相似文献   

8.
Novel Gold Selenium Complexes: Syntheses and Structures of [Au10Se4(dpppe)4]Br2, [Au2Se(dppbe)], [(Au3Se)2(dppbp)3]Cl2, and [Au34Se14(tpep)6(tpepSe)2]Cl6 The reaction of gold phosphine complexes [(AuX)(PR3)] (X= halogen; R = org. group) with Se(SiMe3)2 yield to new chalcogeno bridged gold complexes. Especially within the use of polydentate phosphine ligands cluster complexes like [Au10Se4(dpppe)4]Br2 ( 1 ) (dpppe = 1, 5‐Bis(diphenylphosphino)pentane), [Au2Se(dppbe)] ( 2 ) (1, 4‐Bis(diphenylphosphino)benzene), [(Au3Se)2(dppbp)3]Cl2 ( 3 ) (dppbp = 4, 4′‐Bis‐diphenylphosphino)biphenyl) und [Au34Se14(tpep)6(tpepSe)2]Cl6 ( 4 ) (tpep = 1, 1, 1‐Tris(diphenylphosphinoethyl)phosphine, tpepSe = 1, 1‐Bis(diphenylphosphinoethyl)‐1‐(diphenylselenophosphinoethylphosphine) could be isolated and their structures could be determined by X‐ray diffraction. ( 1: Space group P1 (No. 2), Z = 2, a = 1642.1(11), b = 1713.0(9), c = 2554.0(16) pm, α = 80.41(3)°, β = 76.80(4)°, γ = 80.92(4)°; 2: Space group P21/n (No. 14), Z = 4, a = 947.3(2), b = 1494.9(3), c = 2179.6(7) pm, β = 99.99(3)°; 3: Space group P21/c (No. 14), Z = 8, a = 2939.9(6), b = 3068.4(6), c = 3114.5(6) pm, β = 109.64(3)°; 4: Space group P1 (No. 2), Z = 1, a = 2013.7(4), b = 2420.6(5), c = 2462.5(5) pm, α = 77.20(3), β = 74.92(3), γ = 87.80(3)°).  相似文献   

9.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

10.
Syntheses and Structures of the Polymeric Silver Complexes [Ag2Cl2(dppbp)3], [Ag2(SPh)2(dppe)3] and [Ag2(SPh)2(triphos)] as well as the Silver Chalcogenido Clusters [Ag7(SPh)7(dppm)3], {[Ag7(TePh)7(dppp)3]2(dppp)}, and [Ag22Cl(SPh)10(PhCOO)11(dmf)3] The reaction of silver carboxylate with silylated chalcogen compounds have been found to have a possibility for the synthesis of metal‐chalcogenide‐custers. Especially phosphine ligands have been found to be useful in stabilising the cluster cores. Some of the silver carboxylate phosphine complexes, which are formed in‐situ, ([Ag2Cl2(dppbp)3] ( 1 )) and some silver chalcogen complexes ([Ag2(SPh)2(dppe)3] ( 2 ) und [Ag2(SPh)2(triphos)] ( 3 )), could be isolated and characterised by X‐ray diffraction. Using special reaction conditions, it is possible to isolate cluster species like [Ag7(SPh)7(dppm)3] ( 4 ), {[Ag7(TePh)7(dppp)3]2(dppp)} ( 5 ) and [Ag22Cl(SPh)10(PhCOO)11(dmf)3] ( 6 ) beside the complex compounds. 1: Space group P21/n (No. 14), Z = 2, a = 1336, 1(2), b = 2081, 2(5), c = 2015, 4(4) pm, β = 99, 87(2)°; 2: Space group P21/n (No. 14), Z = 2, a = 1416, 1(3), b = 1874, 7(4), c = 1444, 8(3) pm, β = 93, 26(3)°; 3: Space group P21/n (No. 14), Z = 4, a = 1456, 8(3, b = 1890, 2(4), c = 1916, 1(4) pm, β = 99, 11(3)°; 4: Space group P21/n (No. 14), Z = 4, a = 1570, 2(3), b = 2798, 5(6), c = 2752, 7(6) pm, β = 98, 02(3)°; 5: Space group P1 (No. 2), Z = 2, a = 2115, 5(4), b = 2553, 3(5), c = 3188, 7(6) pm, α = 68, 87(3)°, β = 74, 05(3)°, γ = 69, 70(3)°; 6: Space group P1 (No. 2), Z = 2, a = 1583, 0(3), b = 1709, 6(3), c = 2990, 0(6) pm, α = 80, 41(3)°, β = 88, 86(3)°, γ = 71, 10(3)°).  相似文献   

11.
By reaction of GeI4, [N(nBu)4]I as iodide donor, and [NMe(nBu)3][N(Tf)2] as ionic liquid, reddish‐black, plate‐like shaped crystals are obtained. X‐ray diffraction analysis of single crystals resulted in the compositions ;alpha;‐[NMe(nBu)3](GeI4)I (Pbca; a = 1495.4(3) pm; b = 1940.6(4) pm; c = 3643.2(7) pm; Z = 16) and β‐[NMe(nBu)3](GeI4)I (Pn; a = 1141.5(2) pm; b = 953.6(2) pm; c = 1208.9(2) pm; β = 100.8(1)°; Z = 2). Depending on the reaction temperature, the one or other compound is formed selectively. In addition, the reaction of GeI4 and [N(nBu)4]I, using [ImMe(nBu)][BF4] (Im = imidazole) as ionic liquid, resulted in the crystallization of [ImMe(nBu)][N(nBu)4](GeI4)3I2 (P21/c; a = 1641.2(3) pm; b = 1903.0(4) pm; c = 1867.7(4) pm; β = 92.0(1)°; Z = 4). The anionic network of all three compounds is established by molecular germanium(IV)iodide, which is bridged by iodide anions. The different connectivity of (GeI4–I) networks is attributed to the flexibility of I regarding its coordination and bond length. Here, a [3+1]‐, 4‐ and 5‐fold coordination is first observed in the pseudo‐ternary system M/Ge/I (M: cation).  相似文献   

12.
Reactions of PtCl2(cod) (cod = cycloocta‐1,5‐diene) with 2,4,6‐trifluoro‐ and 2,3,4,5‐tetrafluoro‐phenyllithium in diethyl ether gives Pt(C6H2F3‐2,4,6)2(cod) ( 1 ) (monoclinic, P21/n, Z = 4, a = 7.141(1), b = 15.002(2), c = 17.071(3) Å, β = 91.37(2)°) and Pt(C6HF4‐2,3,4,5)2(cod) ( 2 ) (triclinic, P 1, Z = 2, a = 10.150(2), b = 10.762(2), c = 10.812(2) Å, α = 63.606(3), β = 63.327(3), γ = 76.496(3)°) respectively, which have two ipso carbon atoms and two double bond midpoint centres in a square planar arrangement, and aromatic rings angled near perpendicular to the coordination plane.  相似文献   

13.
A new chromium thiophosphate, K3Cr2(PS4)3 has been prepared and characterized by single‐crystal diffraction, temperature dependent magnetic susceptibility measurements and optical spectroscopy. K3Cr2(PS4)3 crystallizes in the monoclinic space group P21/n (No. 14) with a = 9.731(2) Å, b = 11.986(2) Å, c = 17.727(4) Å, β = 96.52(2)°, V = 2054.2(2) Å3, Z = 4, and R = 0.044. The anionic part of the structure consists of dimeric Cr23‐S3PS)2 units which are linked by bidentate PS4 groups to form infinite one‐dimensional [S2PS2Cr23S3PS)2]3— chains separated by K+ cations. The CrIII centers of the Cr23‐S3PS)2 units are antiferromagnetically coupled. The magnetic susceptibility data may be fitted using a D‐Heisenberg model for S = 3/2 with g = 2.02 and J/k = 10K. K3Cr2(PS4)3 is semiconducting with an optical band gap of 1.35 eV.  相似文献   

14.
Two coordination polymers, [Co(phen)(oba)(H2O)2] ( 1 ) and [Cd3(phen)3(oba)2(Hoba)2(H2O)2] ( 2 ) (oba = 4, 4′‐oxybis(benzoate), phen = 1, 10‐phenanthroline) have been synthesized under hydrothermal conditions. Complex 1 crystallizes in monoclinic, P21/n, a = 7.543(6), b = 33.05(2), c = 9.902(5)Å, β = 103.69(2)°, V = 2398(3)Å3, Z = 4; 2 in monoclinic, P2/n, a = 15.11(1), b = 10.069(8), c = 28.02(2)Å, β = 101.83(1)°, V = 4174(5)Å3, Z = 2. X‐ray single‐crystal diffraction investigations shows that the complexes 1 and 2 consist of helical chains, which are further assembled into layers and networks via supramolecular interactions such as π—π stacking interactions and hydrogen bonds, respectively. The results indicate that the coordination environment is one of the most important factors for assembly of single‐stranded helical chains into double‐stranded helical chains via supramolecular interactions.  相似文献   

15.
Three new uranyl polyphosphates, α‐K[(UO2)(P3O9)] ( 1 ), β‐K[(UO2)(P3O9)] ( 2 ), and K[(UO2)2(P3O10)] ( 3 ), were prepared by high‐temperature solid‐state reactions. The crystal structures of the compounds have been solved by direct methods: 1 – monoclinic, P21/m, a = 8.497(1), b = 15.1150(1), c = 14.7890(1) Å, β = 91.911(5)°, V = 1898.3(3) Å3, Z = 4, R1 = 0.0734 for 4181 unique reflections with |F0| ≥ 4σF; 2 – monoclinic, P21/n, a = 8.607(1), b = 14.842(2), c = 14.951(1) Å, β = 95.829(5)°, V = 1900.0(4) Å3, Z = 4, R1 = 0.0787 for 3185 unique reflections with |F0| ≥ 4σF; 3 – Pbcn, a = 10.632(1), b = 10.325(1), c = 11.209(1) Å, V = 1230.5(2) Å3, Z = 4, R1 = 0.0364 for 1338 unique reflections with |F0| ≥ 4σF. In the structures of 1 and 2 , phosphate tetrahedra share corners to form infinite [PO3]? chains, whereas, in the structure of 3 , tetrahedra form linear [P3O10]5? trimers. The structures are based upon 3‐D frameworks of U and P polyhedra linked by sharing common O corners. The infinite [PO3]? chains in the structures of 1 and 2 are parallel to [100] and [–101], respectively. The uranyl polyphosphate frameworks are occupied by host K+ cations.  相似文献   

16.
Synthesis and Crystal Structure of Vanadium(III) Borophosphate, V2[B(PO4)3] By reaction of boron phosphate, BPO4, and vanadium(IV)‐oxide, VO2, at 1050 °C a hitherto unknown vanadium(III)‐borophosphate is formed. Its composition was found to be V2BP3O12, its structure was elucidated by single crystal X‐ray diffraction, the cell parameters are: a = b = 13.9882Å; c = 7.4515Å; α = β = 90°, γ = 120°; Z = 6; space group: P6 3/m. Noteworthy features of the structure are V2O9 units (two VIIIO6 octahedra connected via their faces) and isolated trisphosphatoborate groups, B(PO4)3. By shared oxide ions, the aforementioned groups are interconnected, thus forming a three dimensional network. The structural relation between the title compound and an analogous chromium compound is discussed.  相似文献   

17.
The title compound has been synthesized by the reaction of α-dithionaphthoic acid with CuCl2 in pyridine or by recrystallizing Cu4(α-C10H7CSS2)4 ? 1/2CS2 in a mixture of pyridine and alcohol. The structure of the title compound is determined by a single-crystal X-ray diffraction analysis. The crystal belongs to triclinic space group with unit cell parameters: a=7.085(2)Å, b= 8.672(3)Å and c=13.598(5)Å; a=92.40(3)°, β=102.59(4)° and γ=105.67(4)°; V=780.6Å2; Z=1. The structure was refined to R=0.058 for 2390 reflections. The molecule of the title compound sits on a center of symmetry. The shorter Cu—Cu bond length (2.606Å) shows considerable interaction between copper atoms. If the Cu—Cu interaction is ignored, the neighbouring S and N atoms are coordinated to copper atom in a configuration of distorted tetrahedron.  相似文献   

18.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

19.
The syntheses and single crystal X‐ray structure determinations are reported for [Li(thf)4][SnCl5(thf)] ( 1 ) and {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} ( 2 ). Compound 1 is ionic with a tetrahedral coordinated lithium cation and distorted octahedral tin (IV) atom in the anion, while compound ( 2 ) is a centrosymmetric heteronuclear double salt of LiCl and SnCl4. [Li(thf)4][SnCl5(thf)] is monoclinic, P21/n, a = 11.204(1), b = 15.599(1), c = 17.720(2) Å; β = 96.734(2)°, Z = 4, R 0.0418; {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} is monoclinic, P21/n, a = 10.848(2), b = 12.764(2), c = 11.748(2) Å; β = 90.388(3)°, Z = 4, R = 0.0851.  相似文献   

20.
Ba3P3I2 and Ba5P5I3: Stepwise Oxidation of Barium Phosphide with Iodine The novel compounds Ba3P3I2 and Ba5P5I3 were obtained by the reaction of barium phosphide with iodine. The air and moisture sensitive compounds crystallize in new structure types: Ba3P3I2 (oP32; Pnma; a = 1719.5(4) pm; b = 462.4(2) pm; c = 1427.2(4) pm; Z = 4; R(F)N′ = 0.067 (N′(hkl) = 2667), Ba5P5I3 (mC52; C2/m; a = 4266.4(13) pm; b = 456.3(2) pm; c = 943.1(3) pm; ß = 92.20(3)°; Z = 4; R(F)N′ = 0.040 (N′(hkl) = 3909). Both can be described as double salts of a hypothetic Zintl Phase ('Ba2P3' or 'Ba7P10') and a halide (BaI2). Characteristic structural features are P3 and P4 chains, corresponding to Ba3[P3]I2 and Ba10[P3]2[P4]I6, respectively. The bonding characteristics will be interpreted on the basis of the structure and the physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号