首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M[B(CN)4]2: Two new Tetracyanoborate Compounds with divalent Cations (M = Zn, Cu) The reaction of ZnO or CuO with [H3O][B(CN)4] in aqueous solution yielded single crystals of Zn[B(CN)4]2 and Cu[B(CN)4]2, respectively. The compounds were characterized by single‐crystal X‐ray diffraction. Zn[B(CN)4]2 ( (no. 164), a = b = 7.5092(9) Å, c = 6.0159(6) Å, Z = 1) crystallizes isotypic with Hg[B(CN)4]2. The structure of Cu[B(CN)4]2 (C2/m (no. 12), a = 13.185(3) Å, b = 7.2919(9) Å, c = 6.029(1) Å, β = 93.02(2)°, Z = 2) can be considered as a super‐structure, resulting from Jahn‐Teller distortion of the Cu2+ ions. Magnetic measurements were performed for the copper compound. Vibrational spectra and thermal stabilities were compared with the known mercury(II) tetracyanoborate.  相似文献   

2.
Preparation, Spectroscopic Characterization and Crystal Structures of Mercury(II)‐bis(tetracyanoborate) Hg[B(CN)4]2 and Dimercury(I)‐bis(tetracyanoborate) Hg2[B(CN)4]2 Hg[B(CN)4]2 ( 1 ) is synthesised by the reaction between Hg(NO3)2 and K[B(CN)4]2. In a comproportionation reaction of 1 with elemental mercury the corresponding mercury(I) salt Hg2[B(CN)4]2 ( 2 ) is obtained. The compounds were characterised by vibrational‐ and NMR‐spectroscopy, and their crystal structures were determined. Hg[B(CN)4]2 crystallizes in the trigonal system in the space group P3¯m1 with a = 781.75(3) pm, c = 601.68(2) pm, V = 318.44(2)Å3, and one formula unit per unit cell. For Hg2[B(CN)4]2 an orthorhombic unit cell with a = 568.9(1) pm, b = 3280.9(7) pm, c = 601.68(2) pm, V = 1389.6(5)Å, and Z = 4 is observed.  相似文献   

3.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

4.
The Tetracyanoborates M[B(CN)4], M = [Bu4N]+, Ag+, K+ The tetracyanoborate anion is prepared for the first time as the tetrabutylammonium salt by the reaction of [NBu4]BX and BX3 (X = Br, Cl) in toluene with KCN. After purification and recrystallization of the product from CHCl3 colorless and needle size single crystals of [Bu4N][B(CN)4] are formed. After metathesis with AgNO3 the silver salt and subsequently with KBr the potassium salt is prepared. The three salts are characterized by single crystal X‐ray diffraction (Ag[B(CN)4] P 43m, a = 5.732(1) Å, V = 188.3 Å3, Z = 1, R1 = 0.75%; K[B(CN)4] I41/a, a = 6.976(1), c = 14.210(3) Å, V = 691.5 Å3, Z = 4, R1 = 1.90%; [Bu4N][B(CN)4] Pnna, a = 17.765(3), b = 11.650(2), c = 11.454(2) Å, V = 2370.5 Å3, Z = 4, R1 = 6.09%) and by NMR‐, IR‐, Raman‐ as well by UV‐spectroscopy.  相似文献   

5.
Although pure hydrogen cyanide can spontaneously polymerize or even explode, when initiated by small amounts of bases (e.g. CN?), the reaction of liquid HCN with [WCC]CN (WCC=weakly coordinating cation=Ph4P, Ph3PNPPh3=PNP) was investigated. Depending on the cation, it was possible to extract salts containing the formal dihydrogen tricyanide [CN(HCN)2]? and trihydrogen tetracyanide ions [CN(HCN)3]? from liquid HCN when a fast crystallization was carried out at low temperatures. X‐ray structure elucidation revealed hydrogen‐bridged linear [CN(HCN)2]? and Y‐shaped [CN(HCN)3]? molecular ions in the crystal. Both anions can be considered members of highly labile cyanide‐HCN solvates of the type [CN(HCN)n]? (n=1, 2, 3 …) as well as formal polypseudohalide ions.  相似文献   

6.
The crystal structures of two square tetracyanocomplexes were determined. [Ni(dien)2][Ni(CN)4]·2H2O (NDNCH) and [Ni‐(dien)2][Pd(CN)4] (NDPC) (dien = diethylene triamine) exhibit ionic structures consisting of mer‐[Ni(dien)2]2+ cations and [Ni(CN)4]2‐ or [Pd(CN)4]2‐ anions, respectively. Moreover, the structure of NDNCH is completed by two water molecules of crystallisation. In both compounds hydrogen bonds contribute to the stabilisation of the structure. NDNCH dehydrates on air quickly yielding anhydrous [Ni(dien)2][Ni(CN)4] (NDNC). Its thermal decomposition proceeds in a complicated process followed by aerial oxidation of metallic nickel to NiO.  相似文献   

7.
A series of new coordination polymers bearing the [B(O–C6H4–CN)4] anion was synthesized. Two new, one dimensional coordination frameworks of the type M[B(O–C6H4–CN)4] (M = Ag, Cu) were obtained by salt metathesis. The reactivity towards organic Lewis‐bases was studied. The reaction with bidentate ligands yielded two dimensional networks with the general formula [M(L)][B(O–C6H4–CN)4] {L = 2,2′‐bipyridine, 4,4′‐bipyridine, 1,2‐bis(pyridyl)ethane, 1,4‐diazabicyclo[2.2.2]octane}. The synthesis, properties and single crystal structure are reported.  相似文献   

8.
From the 1:1 system of [Cu(dien)2](NO3)2 and K[Ag(CN)2] in water (dien is diethyl­enetri­amine, C4H13N3), the novel compound catena‐poly­[bis­[[μ‐cyano‐1:2κ2C:N‐diethyl­enetri­amine‐2κ3N‐copper(II)silver(I)]‐μ‐cyano‐1:2′κ2C:N] di­cyano­silver(I) tri­cyanodisilver(I)], [CuAg(CN)2(dien)]2[Ag(CN)2][Ag2(CN)3], has been isolated. The structure is formed from positively charged [–Cu(dien)–NC–Ag–CN–]nn+ chains and two isolated centrosymmetric [Ag(CN)2]? and [Ag2(CN)3]? anions. In the cationic chains, the Cu atoms are linked by bridging di­cyano­argentate groups, and the deformed square‐pyramidal coordination polyhedron of the CuII cation is formed from a tridentate chelate‐like bonded dien ligand and two N‐bonded bridging cyano groups. One of the bridging cyano groups occupies the apical (ap) position [mean Cu—­Neq = 2.02 (2) Å, and Cu—Nap = 2.170 (3) Å; eq is equatorial]. Short argentophilic interactions in the range 3.16–­3.30 Å are present in the crystal structure.  相似文献   

9.
The octahedral complexes trans‐[Fe(CN)2(tOcNC)4] and trans‐[Mn(CN)(CO)(tOcNC)4] are produced by the reaction of 2‐isocyano‐2,4,4‐trimethyl‐pentane (tert. octyl‐isocyanide) with the corresponding transition metal carbonyls Fe2(CO)9 and Mn2(CO)10. In contrast to isostructural compounds with less bulky tert.‐butylisocyanide ligands the cyanide groups in trans‐[Fe(CN)2(tOcNC)4] and trans‐[Mn(CN)(CO)(tOcNC)4] do not act as hydrogen bond acceptors towards solvent molecules in the crystal structures. In addition, the corresponding cis‐isomers are configurationally unstable. The reaction of trans‐[Fe(CN)2(tOcNC)4] and trans‐[Ru(CN)2(tOcNC)4] with MnCl2, NiCl2 and Co(NO3)2 ends up in the formation of cyanide bridged coordination polymers. X‐ray structure determinations of the cobalt compounds reveal different molecular structures. Whereas the former produces highly distorted infinite polymeric chains with the nitrate anions still coordinated to the cobalt centers, the latter forms polymers with the cobalt atoms being coordinated by four ethanol molecules to which the anions are bound via hydrogen bond interactions. The coordination geometries around ruthenium and cobalt in this coordination polymer are therefore nearly perfectly octahedral and tetrahedral, respectively. Measurements of the magnetic susceptibility of the coordination polymers at different temperatures are indicative of weak antiferromagnetic coupling of the paramagnetic centers along the polymeric chains.  相似文献   

10.
The reaction of tetracyanidoboronic acid, H[B(CN)4], with CoCO3 or Co(OH)2 in aqueous solution leads after slow evaporation of water to single crystals of Co[B(CN)4]2 · 2H2O. The compound has been characterized by single crystal X‐ray diffraction ( , a = 12.2922(9), c = 9.2235(7) Å, Z = 4). The Co2+ ion is octahedrally coordinated by four nitrogen atoms of four different tetracyanidoborate CN groups occupying the four equatorial positions and two molecules of water occupying the remaining corners of the octahedron. The single crystal X‐ray structure, the vibrational spectra, and the thermal properties are compared with other known tetracyanidoborates with divalent cations.  相似文献   

11.
A new iron(II) orthophosphate K[Fe(PO4)] has been obtained by hydrothermal synthesis and its crystal structure was determined by single‐crystal X‐ray diffraction: space group P21/n, Z = 8, a = 9.6199(10), b = 8.6756(8), c = 10.8996(13) Å, β = 115.577(8)° at 193 K, R = 0.023. FeII shows coordination numbers (CN) 4 (distorted tetrahedral) and CN 5 (distorted trigonal bipyramidal). The [FeO4] and [FeO5] units form together with the [PO4] tetrahedra a microporous 3D para‐framework with open channels along the a and b directions. The potassium ions positioned in the channels show CN 7 and 8. The structural relations within the morphotropic row of non‐isotypic K[M(PO4)] structures (M = Zn, Ni, Mn, Fe) are discussed on the basis of common basic structural units.  相似文献   

12.
Gadolinium dicyanamide dihydrate Gd[N(CN)2]3 · 2 H2O was prepared by ion exchange in aqueous solution followed by evaporation of the solvent at room temperature. Gd[N(CN)2]3 · 2 H2O was characterized by single‐crystal structure analysis, FTIR spectroscopy and DSC analysis. In the crystal there are three crystallographically independent [N(CN)2]? ions and Gd3+ which are coordinated by six N atoms from six different [N(CN)2]? ions and two O atoms from two water molecules forming an irregular quadratic antiprism. Four H bonds have been identified in the structure of Gd[N(CN)2]3 · 2 H2O, two of them running to terminal N atoms and two to the bridging N atoms of dicyanamide ions (Gd[N(CN)2]3 · 2 H2O: P21/n (no. 14), a = 7.4845(15) Å, b = 11.529(2) Å, c = 13.941(3) Å, β = 93.98(3)°, Z = 4, 1948 reflections, 175 parameters, R1 = 0.0493). The DSC analysis indicates that Gd[N(CN)2]3 · 2 H2O looses the crystal water at temperatures around 130 – 140 °C forming anhydrous Gd[N(CN)2]3, the structure of which has been refined by the Rietveld method based on X‐ray powder diffraction data. Gd[N(CN)2]3 was found to be isotypic with Ln[N(CN)2]3 (Ln = La, Ce, Pr, Nd, Sm and Eu) which previously have been described in the literature.  相似文献   

13.
Self‐assembly of the [Mo(CN)7]4– anion and the Mn2+ ion in the aqueous solution containing ammonium formate results in a new coordination polymer, {(NH4)3[(H2O)Mn3(HCOO)][Mo(CN)7]2·4H2O}n. Single crystal X‐ray analysis revealed a very complicated three‐dimensional (3D) framework, where both the [Mo(CN)7]4– and the formate anions act as bridges between the MnII centers. Magnetic measurements revealed that this compound displays ferrimagnetic ordering below 70 K. Competing antiferromagnetic interactions between the spin carriers might lead to spin frustration and non‐linear alignment of the magnetic moments. Specifically, this compound is the first mixed [Mo(CN)7]4–/HCOO bridged molecule magnet.  相似文献   

14.
Magnesium dicyanamide tetrahydrate Mg[N(CN)2]2 · 4 H2O was synthesized by aqueous ion exchange starting from Na[N(CN)2] and Mg(NO3)2 · 6 H2O. The crystal structure was solved and refined on the basis of powder X‐ray diffraction data (P21/c, Z = 2, a = 737.50(2), b = 732.17(1), c = 971.67(2) pm, β = 98.074(1)°, wRp = 0.059, Rp = 0.046, RF = 0.075). In the crystal there are neutral complexes [Mg[N(CN)2]2(H2O)4] which are only connected via hydrogen bonds. Above 40 °C the tetrahydrate decomposes into anhydrous Mg[N(CN)2]2.  相似文献   

15.
A series of lead(II) coordination polymers containing [N(CN)2]? (DCA) or [Au(CN)2]? bridging ligands and substituted terpyridine (terpy) ancillary ligands ([Pb(DCA)2] ( 1 ), [Pb(terpy)(DCA)2] ( 2 ), [Pb(terpy){Au(CN)2}2] ( 3 ), [Pb(4′‐chloro‐terpy){Au(CN)2}2] ( 4 ) and [Pb(4′‐bromo‐terpy)(μ‐OH2)0.5{Au(CN)2}2] ( 5 )) was spectroscopically examined by solid‐state 207Pb MAS NMR spectroscopy in order to characterise the structural and electronic changes associated with lead(II) lone‐pair activity. Two new compounds, 2 and [Pb(4′‐hydroxy‐terpy){Au(CN)2}2] ( 6 ), were prepared and structurally characterised. The series displays contrasting coordination environments, bridging ligands with differing basicities and structural and electronic effects that occur with various substitutions on the terpyridine ligand (for the [Au(CN)2]? polymers). 207Pb NMR spectra show an increase in both isotropic chemical shift and span (Ω) with increasing ligand basicity (from δiso=?3090 ppm and Ω=389 ppm for 1 (the least basic) to δiso=?1553 ppm and Ω=2238 ppm for 3 (the most basic)). The trends observed in 207Pb NMR data correlate with the coordination sphere anisotropy through comparison and quantification of the Pb? N bond lengths about the lead centre. Density functional theory calculations confirm that the more basic ligands result in greater p‐orbital character and show a strong correlation to the 207Pb NMR chemical shift parameters. Preliminary trends suggest that 207Pb NMR chemical shift anisotropy relates to the measured birefringence, given the established correlations with structure and lone‐pair activity.  相似文献   

16.
The crystal structure of K[BF3(CN)] (Pbcn (Nr. 60) with a = 13.3486(15) b = 6.5239(7) c = 10.0085(11) Å, and eight formula units per unit cell) has been determined and the one of K[BF2(CN)2] was confirmed and improved. The different networks in the complete series of borates K[BFx(CN)4–x], x = 0–4 are compared and discussed.  相似文献   

17.
The Tetracyanoboronic Acids H[B(CN)4]·n H2O, n = 0, 1, 2 Treatment of an aqueous solution of Na[B(CN)4] with an acidic cation exchange resin leads to a solution of the strong tetracyanoboronic acid. Evaporation of the solution at room temperature yields colourless single crystals of [H5O2][B(CN)4] ( , a = 9.5830(2) Å, c = 14.25440(3) Å, Z = 1). Further drying of [H5O2][B(CN)4] (mp. 115 °C) in vacuum at 50 °C gives polycrystalline [H3O][B(CN)4] (P63mc, a = 8.704(1) Å, c = 6.152(1) Å, Z = 2), which is thermally stable up to 145 °C. The anhydrous polycrystalline acid H[B(CN)4] is formed quantitatively by reacting Me3SiNCB(CN)3 with gaseous HCl. This acid starts to decompose at 190 °C with loss of HCN. All three acids were further characterized by vibrational spectroscopy, and elemental analysis.  相似文献   

18.
A new cyano‐bridged binuclear 4f‐3d complex Sm(DMSO)4‐(H2O)3Cr(CN)6 was synthesized and characterized by single crystal structure analysis. It crystallizes in monoclinic, space group P21 with a=0.9367(2) nm, b = 1.3917(3) nm, c = 1.1212(2) run, β = 99.88(3)° and Z = 2. In this binuclear complex, Sm atom is eight coordinated and linked to the Cr atom by a cyano bridge. The molecules packs to form 3D structure due to the hydrogen bonds among them. [K3(18‐C‐6)3(H2O)4]Cr(CN)6·3H2O (18‐C‐6 represents 18‐crown‐6‐ether) that was synthesized as a byproduct in the preparation of a Gd—Cr complex is also structurally characterized. Crystal data: triclinic, space group P‐l with a = 1.0496(7) nm, b= 1.1567(14) nm, c = 1.3530(13) nm, a = 94.15(9)°, β = 96.04(8)°, γ = 95.25(9)° and Z = l. [K3(18‐C‐6)3(H2O)4]‐Cr(CN)6·3H2O consists of ionic [K3(18‐C‐6)3(H2O)4]3+ and [Cr(CN)6]3‐ pairs, of which the [K3(18‐C‐6)3(H2O)4]3+ ion is a trinuclear duster connected by water, and K atoms are eight coordinated by eight oxygen atoms of one 18‐C‐6 and two water molecules.  相似文献   

19.
Crystal Structure and Vibrational Spectrum of (H2NPPh3)2[SnCl6]·2CH3CN Single crystals of (H2NPPh3)2[SnCl6]·2CH3CN ( 1 ) were obtained by oxidative addition of tin(II) chloride with N‐chloro‐triphenylphosphanimine in acetonitrile in the presence of water. 1 is characterized by IR and Raman spectroscopy as well as by a single crystal structure determination: Space group , Z = 2, lattice dimensions at 193 K: a = 1029.6(1), b = 1441.0(2), c = 1446.1(2) pm, α = 90.91(1)°, β = 92.21(1)°, γ = 92.98(1)°, R1 = 0.0332. 1 forms an ionic structure with two different site positions of the [SnCl6]2? ions. One of them is surrounded by four N‐hydrogen atoms of four (H2NPPh3)+ ions, four CH3CN molecules form N–H···N≡C–CH3 contacts with the other four N‐hydrogen atoms of the cations. Thus, 1 can be written as [(H2NPPh3)4(CH3CN)4(SnCl6)]2+[SnCl6]2?.  相似文献   

20.
The systematic study of the reaction of M[PF6] salts and Me3SiCN led to a synthetic method for the synthesis and isolation of a series of salts containing the unprecedented [PF2(CN)4]? ion in good yields. The reaction temperature, pressure, and stoichiometry were optimized. The crystal structures of M[PF2(CN)4] (M=[nBu4N]+, Ag+, K+, Li+, H5O2+) were determined. X‐ray crystallography showed the exclusive formation of the cis isomer in accord with 31P and 19F solution NMR spectroscopy data. Starting with the K[PF2(CN)4] the room temperature ionic liquid EMIm[PF2(CN)4] was prepared exhibiting a rather low viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号