首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Reactions of bicyclic α‐P4S3I2 with Hpthiq gave solutions containing α‐P4S3(pthiq)I and α‐P4S3(pthiq)2, where Hpthiq is the conformationally constrained chiral secondary amine 1‐phenyl‐1,2,3,4‐tetrahydroisoquinoline. The expected diastereomers have been characterised by complete analysis of their 31P{1H} NMR spectra. Hindered P–N bond rotation in the amide iodide α‐P4S3(pthiq)I caused greater broadening of peaks in the room‐temperature spectrum of one diastereomer than in that of the other. At 183 K, spectra of two P–N bond rotamers for each diastereomer were observed and analysed. The minor rotamers showed strong evidence for steric crowding, having large diastereomeric differences in 1J(P–P) and 2J(P–S–P) couplings (49 Hz, 16 % of value, and 4.4 Hz, 19 % of value, respectively).  相似文献   

2.
Reaction of a mixture of bicyclic phosphorus sulfide selenide iodides α‐P4SnSe3−nI2 (n = 0–3) with PriNH2 and Et3N gave corresponding diamides α‐P4SnSe3−n(NHPri)2 (n = 0–3) and imides α‐P4SnSe3−n(μ‐NPri) (n = 2–3), identified in solution by 31P NMR. In one isomer of α‐P4S2Se(μ‐NPri), the C2 symmetry of imides such as α‐P4S3(μ‐NPri) was broken, allowing relative assignment of 2J NMR couplings to the PNP bridge and the PSP bridge opposite to it. The coupling through the sulfur bridge was found to be reduced to ca. zero, in contrast to previous assumptions for this class of compounds. Ab initio models were calculated at the MPW1PW91/svp level for the sulfide selenide imides and for a selection of bond rotamers of the diamides, and at the MPW1PW91/LanL2DZ(d) level for the sulfide selenide diiodides. Different skeletal isomers were prevalent for the mixed chalcogenide diamides than for the diiodides, showing that exchange of chalcogen between skeletal positions took place in the amination reaction even at room temperature. Similar differences to those observed were predicted by the models, suggesting that equilibrium was attained.  相似文献   

3.
The closo cage molecules α‐ and β‐P4S3(μ‐NCH(Me)Ph) were modelled at the RHF/3‐21G* and MPW1PW91/DZVP levels. For each, the conformational space corresponding to rotation about the C–N bond was explored, and relative average electronic energies were calculated. The β‐isomer was more stable than the α‐isomer by 10.7 kJ mol?1, according to the DFT calculations, in contrast to the unsubstituted model compounds α‐ and β‐P4S3(μ‐NH), where the α‐isomer was more stable. GIAO calculations of phosphorus isotropic NMR shieldings, in the rotamers, led to relative average chemical shifts in the diastereomers. Comparison with experimental chemical shift differences gave an assignment to absolute configuration for α‐P4S3(μ‐NCH(Me)Ph), which agreed with the assignment obtained by comparing calculated relative diastereomer stability with observations. For β‐P4S3(μ‐NCH(Me)Ph), the GIAO calculations allowed relative assignment of observed chemical shifts to the nitrogen bridgehead phosphorus atoms.  相似文献   

4.
Amino Derivatives of α‐P4S3, α‐P4Se3, and P3Se4; Data and Analyses of their 31P NMR Spectra in Solution α‐P4S3I2, α‐P4Se3I2, and P3Se4I were reacted with primary and secondary amines in CS2. The reaction yields exo‐exo isomeres of α‐P4S3L2 and α‐P4Se3L2, the N‐bridged compounds α‐P4S3L′ and P3Se4L, with L = NHR1, NPhR2, THC (R1 = tBu, Ad, Ph, Flu, TPMP; R2 = Me, Et, iPr), and L′ = NR1. The 31P NMR data of the compounds in CS2 solution were measured. By the reaction of α‐P4Se3I2 with primary amines NH2tBu and NH2Ad in CS2 an asymmetric isomer α‐P4Se3Iendo(NHR1)exo was observed for the first time in the 31P NMR spectra. The influence of the ligands L on the 31P NMR parameter of α‐P4S3L2, α‐P4Se3L2, and P3Se4L is discussed.  相似文献   

5.
The diamide exo, exoβ‐P4S3(NHCH(Me)Ph)2 has been made in solution using enantiomerically pure or racemic PhCH(Me)NH2, and its three diastereomers characterised by complete analysis of their 31P{1H} NMR spectra.The unsymmetric diastereomer contains phosphorus atoms, made chemically non‐equivalent by the chirality of the substituents, which show a large 2J(P—P—P) coupling to each other (225.2 Hz).  相似文献   

6.
Reactions of α‐P4S3I2 with (S)‐ or racemic‐RNH2 (R = CH(Me)Ph) have given solutions containing exo, exo‐ or endo, exo‐α‐P4S3(NHR)2, α‐ or β‐P4S3(μ‐NR), or P4S2(μ‐NR), as the first compounds with polycyclic phosphorus sulfide skeletons to contain chiral substituents. The expected diastereomers have been characterised by complete analysis of their 31P{1H} NMR spectra, and relative configuration has been assigned in most cases. Considerable diastereomeric differences in coupling constants and chemical shifts were found.  相似文献   

7.
Synthetic and structural aspects of the phosphanylation of 1,3‐benzazaphospholides 1Li , ambident benzofused azaphosphacyclopentadienides, are presented. The unusual properties of phospholyl‐1,3,2‐diazaphospholes inspired us to study the coupling of 1Li with chlorodiazaphospholene 2 , which led to the N‐substituted product 3 . Reaction of 1Li with chlorodiphenyl‐ and chlorodicyclohexylphosphane likewise gave N‐phosphanylbenzazaphospholes 4 and 5 , whereas with the more bulky di‐tert‐butyl‐ and di‐1‐adamantylchlorophosphanes, the diphosphanes 6 and 7 are obtained; in the case of 7 they are isolated as a dimeric LiCl(THF) adduct. Structural information was provided by single‐crystal X‐ray diffraction and solution NMR spectroscopy experiments. 2D exchange spectroscopy confirmed the existence of two rotamers of the aminophosphane 5 at room temperature; variable‐temperature NMR spectroscopy studies of 6 revealed two dynamic processes, low‐temperature inversion at ring phosphorus (ΔH=22 kJ mol?1, ΔS=2 J K?1 mol?1) and very low‐temperature rotation of the tBu2P group. Quantum chemical studies give evidence that 2‐unsubstituted benzazaphospholides prefer N‐phosphanylation, even with bulky chlorophosphanes, and that substituents at the 2‐position of the heterocycle are crucial for the occurrence of P–N rotamers and for switching to alternative P‐substitution, beyond a threshold steric bulk, by both P‐ and 2‐position substituents.  相似文献   

8.
A New Phosphorus Sulfide with Adamantane Structure: δ‐P4S7 By sulfur abstraction from α‐P4S9/P4S10 with triphenylphosphine a new phosphorus sulfide δ‐P4S7 with adamantane skeleton and an additional sulfur in exo‐position was identified in CS2‐solution by 31P‐NMR spectroscopy. Product distribution and 31P‐NMR parameter are given.  相似文献   

9.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

10.
Ultrasound sonication of protein and peptide solutions is routinely used in biochemical, biophysical, pharmaceutical and medical sciences to facilitate and accelerate dissolution of macromolecules in both aqueous and organic solvents. However, the impact of ultrasound waves on folding/unfolding of treated proteins, in particular, on aggregation kinetics of amyloidogenic peptides and proteins is not understood. In this work, effects of ultrasound sonication on the misfolding and aggregation behavior of the Alzheimer's Aβ(1–40)‐peptide is studied by pulsed‐field gradient (PFG) spin–echo diffusion NMR and UV circular dichroism (CD) spectroscopy. Upon simple dissolution of Aβ(1–40) in perdeuterated trifluoroethanol, CF3‐CD2‐OD (TFE‐d3), the peptide is present in the solution as a stable monomer adopting α‐helical secondary structural motifs. The self‐diffusion coefficient of Aβ(1–40) monomers in TFE‐d3 was measured as 1.35 × 10?10 m2 s?1, reflecting its monomeric character. However, upon ultrasonic sonication for less than 5 min, considerable populations of Aβ molecules (ca 40%) form large aggregates as reflected in diffusion coefficients smaller than 4.0 × 10?13 m2 s?1. Sonication for longer times (up to 40 min in total) effectively reduces the fraction of these aggregates in 1H PFG NMR spectra to ca 25%. Additionally, absorption below 230 nm increased significantly upon sonication treatment, an observation, which also clearly confirms the ongoing aggregation process of Aβ(1–40) in TFE‐d3. Surprisingly, upon ultrasound sonication only small changes in the peptide secondary structure were detected by CD: the peptide molecules mainly adopt α‐helical motifs in both monomers and aggregates formed upon sonication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Synthesis and Crystal Structures of α‐, β‐Ba3(PS4)2 and Ba3(PSe4)2 Ba3(PS4)2 and Ba3(PSe4)2 were prepared by heating mixtures of the elements at 800 °C for 25 h. Both compounds were investigated by single crystal X‐ray methods. The thiophosphate is dimorphic and undergoes a displacive phase transition at about 75 °C. Both modifications crystallize in new structure types. In the room temperature phase (α‐Ba3(PS4)2: P21/a; a = 11.649(3), b = 6.610(1), c = 17.299(2) Å, β = 90.26(3)°; Z = 4) three crystallographically independent Ba atoms are surrounded by ten sulfur atoms forming distorted polyhedra. The arrangement of the PS4 tetrahedra, isolated from each other, is comparable with the formation of the SO42? ions of β‐K2SO4. In β‐Ba3(PS4)2 (C2/m; a = 11.597(2), b = 6.727(1), c = 8.704(2) Å; β = 90.00(3)°; Z = 2) the PS4 tetrahedra are no more tilted along [001], but oriented parallel to each other inducing less distorted tetrahedra and polyhedra around the Ba atoms, respectively. Ba3(PSe4)2 (P21/a; a = 12.282(2), b = 6.906(1), c = 18.061(4) Å; β = 90.23(3)°; Z = 4) is isotypic to α‐Ba3(PS4)2 and no phase transition could be detected up to about 550 °C.  相似文献   

12.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

13.
In an earlier publication (J. Am. Chem. Soc. 2002 , 124, 7111) we showed that polymeric cationic [Ag(P4S3)n]+ complexes (n=1, 2) are accessible if partnered with a suitable weakly coordinating counterion of the type [Al(ORF)4]? (ORF: poly‐ or perfluorinated alkoxide). The present work addresses the following questions that could not be answered in the initial report: How many P4S3 cages can be bound to a Ag+ ion? Why are these complexes completely dynamic in solution in the 31P NMR experiments? Can these dynamics be frozen out in a low‐temperature 31P MAS NMR experiment? What are the principal binding sites of the P4S3 cage towards the Ag+ ion? What are likely other isomers on the [Ag(P4S3)n]+ potential energy surface? Counterion influence: Reactions of P4S3 with Ag[Al{OC(CH3)(CF3)2}4] (Ag[hftb]) and Ag[{(CF3)3CO}3Al‐F‐Al{OC(CF3)3)}3] (Ag[al‐f‐al]) gave [(P4S3)Ag[hftb]] ( 7 ) as a molecular species, whereas [Ag2(P4S3)6]2+[al‐f‐al]?2 ( 8 ) is an isolated 2:1 salt. We suggest that a maximum of three P4S3 cages may be bound on average to an Ag+ ion. Only isolated dimeric dications are formed with the largest cation, but polymeric species are obtained with all other smaller aluminates. Thermodynamic Born–Haber cycles, DFT calculations, as well as solution NMR and ESI mass spectrometry indicate that 8 exhibits an equilibrium between the dication [Ag2(P4S3)6]2+ (in the solid state) and two [Ag(P4S3)3]+ monocations (in the gas phase and in solution). Dynamics: 31P MAS NMR spectroscopy showed these solid adducts to be highly dynamic, to an extent that the 2JP,P coupling within the cages could be resolved (J‐res experiment). This is supported by DFT calculations, which show that the extended PES of [Ag(P4S3)n]+ (n=1–3) and [Ag2(P4S3)2]+ is very flat. The structures of α‐ and γ‐P4S3 were redetermined. Their variable‐temperature 31P MAS NMR spectra are discussed jointly with those of all four currently known [Ag(P4S3)n]+ adducts with n=1, 2, and 3.  相似文献   

14.
The triclinic structure of the title compound, cyclo‐tetrakis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato‐κ2S:S)tetrakis[(triphenylphosphane‐κP)silver(I)], [Ag4(C7H4NO2S2)4(C18H15P)4], is a polymorph of the previously reported monoclinic structure [Dennehy, Mandolesi, Quinzani & Jennings (2007). Z. Anorg. Allg. Chem. 633 , 2746–2752]. In both polymorphs, the complex lies on a crystallographic inversion centre and the bond distances are closely comparable. Some differences can be found in the interatomic angles and torsion angles involving the inner Ag4S4 skeleton. The polymorphs contain essentially identical two‐dimensional layers, but with different layer stacking arrangements. In the triclinic form, all layers are related by lattice translation, while in the monoclinic form they are arranged around glide planes so that adjacent layers are mirrored with respect to each other.  相似文献   

15.
Mixtures of N‐alkyl pyridinium compounds [py‐N‐(CH2)nOC6H3‐3,5‐(OMe)2]+(X?) ( 1b Cl: n=10, X=Cl; 1c Br: n=12, X=Br) and α‐cyclodextrin (α‐CD) form supramolecular hydrogels in aqueous media. The concentrations of the two components influences the sol–gel transition temperature, which ranges from 7 to 67 °C. Washing the hydrogel with acetone or evaporation of water left the xerogel, and 13C CP/MAS NMR measurements, powder X‐ray diffraction (XRD), and scanning electron microscopy (SEM) revealed that the xerogel of 1b Cl (or 1c Br) and α‐CD was composed of pseudorotaxanes with high crystallinity. 13C{1H} and 1H NMR spectra of the gel revealed the detailed composition of the components. The gel from 1b Cl and α‐CD contains the corresponding [2]‐ and [3]pseudorotaxanes, [ 1b? (α‐CD)]Br and [ 1b? (α‐CD)2]Br, while that from 1c Br and α‐CD consists mainly of [3]pseudorotaxane [ 1c? (α‐CD)2]Br. 2D ROESY 1H NMR measurements suggested intermolecular contact of 3,5‐dimethoxyphenyl and pyridyl end groups of the axle component. The presence of the [3]pseudorotaxane is indispensable for gel formation. Thus, intermolecular interaction between the end groups of the axle component and that between α‐CDs of the [3]pseudorotaxane contribute to formation of the network. The supramolecular gels were transformed into sols by adding denaturing agents such as urea, C6H3‐1,3,5‐(OH)3, and [py‐NnBu]+(Cl?).  相似文献   

16.
The preparation of (2S,3S)‐ and (2R,3S)‐2‐fluoro and of (3S)‐2,2‐difluoro‐3‐amino carboxylic acid derivatives, 1 – 3 , from alanine, valine, leucine, threonine, and β3h‐alanine (Schemes 1 and 2, Table) is described. The stereochemical course of (diethylamino)sulfur trifluoride (DAST) reactions with N,N‐dibenzyl‐2‐amino‐3‐hydroxy and 3‐amino‐2‐hydroxy carboxylic acid esters is discussed (Fig. 1). The fluoro‐β‐amino acid residues have been incorporated into pyrimidinones ( 11 – 13 ; Fig. 2) and into cyclic β‐tri‐ and β‐tetrapeptides 17 – 19 and 21 – 23 (Scheme 3) with rigid skeletons, so that reliable structural data (bond lengths, bond angles, and Karplus parameters) can be obtained. β‐Hexapeptides Boc[(2S)‐β3hXaa(αF)]6OBn and Boc[β3hXaa(α,αF2)]6‐OBn, 24 – 26 , with the side chains of Ala, Val, and Leu, have been synthesized (Scheme 4), and their CD spectra (Fig. 3) are discussed. Most compounds and many intermediates are fully characterized by IR‐ and 1H‐, 13C‐ and 19F‐NMR spectroscopy, by MS spectrometry, and by elemental analyses, [α]D and melting‐point values.  相似文献   

17.
Bridging between (i)‐ and (i+3)‐positions in a β3‐peptide with a tether of appropriate length is expected to prevent the corresponding 314‐helix from unfolding (Fig. 1). The β3‐peptide H‐β3hVal‐β3hLys‐β3hSer(All)‐β3hPhe‐β3hGlu‐β3hSer(All)‐β3hTyr‐β3hIle‐OH ( 1 ; with allylated βhSer residues in 3‐ and 6‐position), and three tethered β‐peptides 2 – 4 (related to 1 through ring‐closing metathesis) have been synthesized (solid‐phase coupling, Fmoc strategy, on chlorotrityl resin; Scheme). A comparative CD analysis of the tethered β‐peptide 4 and its non‐tethered analogue 1 suggests that helical propensity is significantly enhanced (threefold CD intensity) by a (CH2)4 linker between the β3hSer side chains (Fig. 2). This conclusion is based on the premise that the intensity of the negative Cotton effect near 215 nm in the CD spectra of β3‐peptides represents a measure of ‘helical content’. An NMR analysis in CD3OH of the two β3‐octapeptide derivatives without (i.e., 1 ) and with tether (i.e., 4 ; Tables 1–6, and Figs. 4 and 5) provided structures of a degree of precision (by including the complete set of side chain–side chain and side chain–backbone NOEs) which is unrivaled in β‐peptide NMR‐solution‐structure determination. Comparison of the two structures (Fig. 5) reveals small differences in side‐chain arrangements (separate bundles of the ten lowest‐energy structures of 1 and 4 , Fig. 5, A and B ) with little deviation between the two backbones (superposition of all structures of 1 and 4 , Fig. 5, C ). Thus, the incorporation of a CH2? O? (CH2)4? O? CH2 linker between the backbone of the β3‐amino acids in 3‐ and 6‐position (as in 4 ) does accurately constrain the peptide into a 314‐helix. The NMR analysis, however, does not suggest an increase in the population of a 314‐helical backbone conformation by this linkage. Possible reasons for the discrepancy between the conclusion from the CD spectra and from the NMR analysis are discussed.  相似文献   

18.
The binary thorium tritelluride, α‐ThTe3, was synthesized by solid‐state methods at 1223 K. From a single‐crystal X‐ray diffraction study the material crystallizes in the TiS3 structure type with two formula units in space group C22hP21/m of the monoclinic system in a cell with lattice constants a = 6.1730 (4) Å, b = 4.3625(3) Å, c = 10.4161(6) Å, and β = 97.756(3)° (at 100 K). The asymmetric unit of this compound comprises one Th atom and three Te atoms each with site symmetry m. Each Th atom is coordinated to eight Te atoms in a bicapped trigonal‐pyramidal arrangement. Th–Te distances range from 3.1708(4) Å to 3.2496(6) Å. The structure features a Te–Te interaction 2.7631(8) Å in length, which is typical for a Te–Te single bond. Thus α‐ThTe3 may be charge balanced and formulated as Th4+Te2–Te22–.  相似文献   

19.
Heteropentapeptides containing the α‐ethylated α,α‐disubstituted amino acid (S)‐butylethylglycine and four dimethylglycine residues, i.e., CF3CO‐[(S)‐Beg]‐(Aib)4‐OEt ( 4 ) and CF3CO‐(Aib)2‐[(S)‐Beg]‐(Aib)2‐OEt ( 7 ), were synthesized by conventional solution methods. In the solid state, the preferred conformation of 4 was shown to be both a right‐handed (P) and a left‐handed (M) 310‐helical structure, and that of 7 was a right‐handed (P) 310‐helical structure. IR, CD, and 1H‐NMR spectra revealed that the dominant conformation of both 4 and 7 in solution was the 310‐helical structure. These conformations were also supported by molecular‐mechanics calculations.  相似文献   

20.
The design and synthesis of β‐peptides from new C‐linked carbo‐β‐amino acids (β‐Caa) presented here, provides an opportunity to understand the impact of carbohydrate side chains on the formation and stability of helical structures. The β‐amino acids, Boc‐(S)‐β‐Caa(g)‐OMe 1 and Boc‐(R)‐β‐Caa(g)‐OMe 2 , having a D ‐galactopyranoside side chain were prepared from D ‐galactose. Similarly, the homo C‐linked carbo‐β‐amino acids (β‐hCaa); Boc‐(S)‐β‐hCaa(x)‐OMe 3 and Boc‐(R)‐β‐hCaa(x)‐OMe 4 , were prepared from D ‐glucose. The peptides derived from the above monomers were investigated by NMR, CD, and MD studies. The β‐peptides, especially the shorter ones obtained from the epimeric (at the amine stereocenter Cβ) 1 and 2 by the concept of alternating chirality, showed a much smaller propensity to form 10/12‐helices. This substantial destabilization of the helix could be attributed to the bulkier D ‐galactopyranoside side chain. Our efforts to prepare peptides with alternating 3 and 4 were unsuccessful. However, the β‐peptides derived from alternating geometrically heterochiral (at Cβ) 4 and Boc‐(R)‐β‐Caa(x)‐OMe 5 (D ‐xylose side chain) display robust right‐handed 10/12‐helices, while the mixed peptides with alternating 4 and Boc‐β‐hGly‐OMe 6 (β‐homoglycine), resulted in left‐handed β‐helices. These observations show a distinct influence of the side chains on helix formation as well as their stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号