首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E A Cherepanov 《Pramana》1999,53(3):619-630
The dinuclear system concept of complete fusion of nuclei has been applied to the analysis of superheavy elements synthesis. The optimal excitation energy of compound nuclei and production cross sections in the cold synthesis of heavy elements with charge Z=102–112 have been calculated. The possibility of synthesizing the element with magic number Z=114 in cold and hot fusion reactions has been considered.  相似文献   

2.
Using the microscopic-macroscopic approach based on the modified two-center shell model, the low-lying quasiparticle spectra, ground-state shell corrections, mass excesses and Q α -values for even Z superheavy nuclei with 108 ≤ Z ≤ 126 are calculated and compared with available experimental data. The predicted properties of superheavy nuclei show that the next doubly magic nucleus beyond 208Pb is at Z ≥ 120. The perspective of using the actinide-based complete fusion reactions for production of nuclei with Z = 120 is studied for supporting future experiments.  相似文献   

3.
The effects of the entrance channel and shell structure on the experimental evaporation residues have been studied by analyzing the 32S + 182W, 48Ti + 166Er and 60Ni + 154Sm reactions leading to 214Th*; the 40Ar + 181Ta reaction leading to 221Pa*; the 48Ca + 243Am, 248Cm, 249Cf reactions leading to the 291115, 296116 and 297118 superheavy compound nuclei, respectively. The fusion mechanism and the formation of evaporation residues of heavy and superheavy nuclei have been studied. In calculations of the excitation functions for capture, fusion and evaporation residues we used such characteristics as mass asymmetry of nuclei in the entrance channel, binding energies and shape of colliding nuclei, potential energy surface, driving potential, partial-fusion cross-sections and survival probability of the compound nucleus, ratio at each step along the de-excitation cascade of the compound nucleus. The calculations have allowed us to make useful conclusions about the mechanism of the fusion-fission process, which is in competition with the quasifission process, and the production of the evaporation residues.Received: 22 April 2003, Revised: 26 June 2003, Published online: 18 December 2003PACS: 25.70.Gh Compound nucleus - 25.70.-z Low and intermediate energy heavy-ion reactions - 27.80. + w - 27.90. + b   相似文献   

4.
This paper presents results of the experiments aimed at producing long-lived superheavy elements located near the spherical-shell closures with Z ⩾ 114 and N ⩾ 172 in the 244Pu + 48Ca and 248Cm + 48Ca reactions. The large measured α-particle energies of the newly observed nuclei, together with the long decay times and spontaneous fission terminating the chains, offer evidence of the decay of nuclei with high atomic numbers. The decay properties of the synthesized nuclei are consistent with the consecutive α-decays originating from the parent nuclides 288, 289114 and 292116, produced in the 3n and 4n evaporation channels with cross-sections of about a picobarn. The present observations can be considered as experimental evidence of the existence of the “island of stability” of superheavy elements. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"e-mail: utyonkov@sungns.jinr.ru  相似文献   

5.
Fusion of two massive nuclei with formation of a superheavy compound nucleus is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross sections. The conservative energy of the system is deduced in a simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z = 110−118 nuclei are compared and favorable conditions are found for fusion of the stable W-Pt isotopes with radioactive fission fragment projectiles, like 94Kr or 100Sr. Thus, the cold-fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission, and available experimental results are discussed. The text was submitted by the authors in English.  相似文献   

6.
The dynamical effects of the entrance channel on the competition between quasifission and fusion processes, and on the evaporation residue formation are investigated. We have analyzed the results and compared our calculations with the experimental data obtained in the 16 O + 204 Pb and 96 Zr + 124 Sn reactions having very different mass asymmetries and leading to the 220 Th * compound nucleus. We have found that different partial capture cross-sections for these reactions lead to different fusion-quasifission competitions and, consequently, to different partial fusion cross-sections of the compound nucleus formed in the two reactions. The dynamical conditions also affect the fission-evaporation competition of the excited intermediate nuclei along the CN de-excitation cascade and, consequently, the evaporation residue formation.Received: 8 March 2004, Revised: 5 April 2004, Published online: 25 October 2004PACS: 25.70.Jj Fusion and fusion-fission reactions - 25.70.-z Low and intermediate energy heavy-ion reactions - 27.80. + w - 27.90. + b   相似文献   

7.
Cross-sections for the synthesis of superheavy elements were analyzed using the concept of a dinuclear system. Experimental values for the production of elements Z = 104, 108, 110, 111 and 112 by cold fusion reactions with targets of 208Pb and 209Bi were reproduced. The model reveals the importance of entrance channel dynamics and competition between quasi-fission and complete fusion processes. Energy windows were observed which allow capture of the reacting nuclei and formation of the compound nucleus. The quantities were studied which are significant for the interaction dynamics of massive nuclei in the entrance channel.  相似文献   

8.
A highly extrapolatable semiempirical shell model mass equation applicable to translead elements up to Z=126 is presented. The equation is applied to the recently discovered superheavy nuclei 293118 and 289114 and their decay products. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The role of the entrance channel in the fusion-fission reactions leading to nearly the same superheavy compound nucleus is studied in the framework of dynamic model. The calculations are done for 48Ca +244Pu and 74,76Ge +208Pb reactions which could lead to formation of superheavy element Z = 114. It is shown that for these reactions there is an energy window for the values of the bombarding energy at which a capture probability is sufficiently large. Together with the restriction coming from the intrinsic barrier for fusion, it helps to find an optimal value of the bombarding energy for a given projectile--target combination. Received: 15 July 1998  相似文献   

10.
11.
We investigated the capture stage and successive nucleon transfer from the projectile to the target in the superheavy system 64 28Ni + 207  82Pb (Z proj. + Z target = 110) . The target-like transfer products were detected at forward angles of (0±2) degrees, such, we selected nuclei resulting from central collisions. The data reveal several analogies to cold fusion reactions leading to superheavy elements. The observations are in accordance with the two-center shell model. The experiments have been performed at the velocity filter SHIP at GSI.  相似文献   

12.
The recent experiments at FLNR, Dubna, demonstrated that cross-sections to produce SHEs by 48Ca-induced reactions on actinide targets increase beyond Z = 111, reach a maximum of 5 pb at Z = 114 and fall below the 1 pb level at Z = 118. A scenario is proposed to understand the findings within the frame of former experimental results of heavy-element production and theoretical predictions about the stability of the nuclides concerned. New ingredients introduced are: 1) to shift the next proton shell beyond Pb from Z = 114 to Z = 122; 2) the isotopes of the elements Z = 112 to Z = 118 are deformed and their nuclei have oblate shapes; 3) the fission barriers around the next nucleus with doubly closed shells 306184122 are larger than the neutron separation energies and reach values in the range of 10MeV. The ascent of the flat top at 306184122 is described by the proposed scenario, which likewise excludes reaching the doubly closed shell region at the top by today’s experimental methods. Communicated by T.S. Bíró  相似文献   

13.
By comparing theoretical and experimental excitation functions of evaporation residues resulting from the same compound nucleus or heavy and superheavy nuclei, it is possible to understand the effect of the entrance channel and the shell structure of reacting nuclei on the fusion mechanism. The competition of complete fusion with the quasifission process is strongly related to the intrinsic fusion barrier B fus * and the quasifission barrier B qf as well as the size of the well in the nucleus-nucleus potential. In our calculations of the excitation functions for capture, fusion, and evaporation residues, we use the relevant variables such as mass asymmetry of nuclei in the entrance channel, potential energy surface, driving potential, spin distribution, and surviving probability of compound nucleus that are responsible for the mechanism of the fusion-fission process. As a result, we obtain a beam energy window for the capture of the nuclei before the system fuses and the Γnf ratio at each step along the deexcitation cascade of the compound nucleus. Calculations performed in the framework of the model taking into account the nuclear shell effect and shape of colliding nuclei allow us to reach useful conclusions about the mechanism of the fusion-fission process and the production of the evaporation residues. We analyze the 40Ar + 176Hf, 86Kr + 130Xe, and 124Sn + 92Zr reactions leading to 216Th*; the 32S + 182W and 60Ni + 154Sm reactions leading to 214Th*; the 48Ca + 248Cm reaction leading to the 296116 compound nucleus; and the 48Ca + 249Cf reaction leading to the 297118 compound nucleus.  相似文献   

14.
Based on the Dirac equation, the features of long-range electromagnetic orientational interaction of slow neutrons with even-even and even-odd nuclei are considered. This interaction is controlled by a narrow potential barrier arranged beyond the nucleus. The barrier height is U tot = 20–40 eV and depends on Z, A, and the nucleus magnetic moment μnucl. The barrier formation is associated with the ponderomotive nonlinear interaction of the anomalous neutron moment with the nucleus electric field. The barrier transparency for thermal neutrons is D(E) ≈ 0.8–0.95. For cold neutrons, the barrier transparency and their reaction cross sections with nuclei sharply decrease and, at E → 0, their cross sections tend toward zero. It was shown that the combined effect of the magnetic dipole-dipole and ponderomotive interaction of the neutron and even-odd nucleus results in the formation of removed symmetrically positioned potential wells for neutrons beyond the nucleus. The presence of these wells results in the possible existence of short-lived or virtual nucleus-neutron molecules and the “neutron halo” effect beyond the nucleus.  相似文献   

15.
We present the results of the experiments aimed at producing hypothetical long-lived superheavy elements located near the spherical shell closures with Z>-114 and N>-172. For the synthesis of superheavy nuclei a combination of neutron-rich reaction partners, such as 244Pu and 248Cm targets and a 48Ca projectile have been used. The sensitivity of the present experiment exceeded by more than two orders of magnitude previous attempts to synthesize superheavy nuclides in reactions of 48Ca projectiles with actinide targets. We observed new decay sequences of genetically linked α-decays terminated by spontaneous fission. The decay properties of the synthesized nuclei are consistent with the consecutive α-decays originating from the parent nuclides 288,289114, produced in the 3n and 4n-evaporation channels, and 292116 — in the 4n-evaporation channel with cross sections of about a picobarn. The present observations can be considered an experimental evidence of the existence of the “island of stability” of superheavy elements and are discussed in terms of modern theoretical approaches.  相似文献   

16.
Mass measurements of the N=Z nuclei 80Zr, 76Sr, 68Se were performed for the first time and a new measurement was obtained for 80Y, using the second cyclotron CSS2 of GANIL as a high-resolution spectrometer. Ions around N=Z were produced by fusion-evaporation in the inverse 58Ni (4.32MeVA) + 24Mg and 12C reactions. New masses were measured by a time-of-flight method, with a precision of 2⋅10−6, by using well-known masses as references. Study of the double binding energy difference δV np is then performed leading to a strong N=Z Wigner effect around N=Z=40. Knowledge of new masses in this region also plays a crucial role in the modelling of the astrophysical rp process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A statistical approach based on the Weisskopf evaporation theory has been developed to describe the deexcitation process of highly excited heavy and superheavy nuclei, in particular for the proton-rich nuclei. The excited nucleus is cooled by evaporating γ-rays, light particles(neutrons, protons, α etc) in competition with binary fission,in which the structure effects(shell correction, fission barrier, particle separation energy) contribute to the processes.The formation of residual nuclei is evaluated via sequential emission of possible particles above the separation energies.The available data of fusion-evaporation excitation functions in the ~(28)Si+~(198)Pt reaction can be reproduced nicely within the approach.  相似文献   

18.
The decoupling experiments involving the time-differential perturbed angular correlation (TDPAC) of the 133–482 keV γ-γ cascade in the presence of an external magnetic field applied along the quantization axis have been performed to measure the electric quadrupole and the magnetic hyperfine interactions experienced by the181Ta nuclei at Hf sites in the pseudobinary compounds HfFe2-xSix, withx=0.1 andx=0.3. The hyperfine magnetic fields measured at 298 K areH hf=133.1±12.0 kG in the cubic (C15) Laves phase compound HfFe1.9Si0.1 andH hf=76.8±7.0 kG in the hexagonal (C14) Laves phase compound HfFe1.7Si0.3. The decoupling technique has also been used to obtain a —ve sign for the hyperfine field experienced by181Ta nuclei at the Ti or Hf sites in the Heusler compound Co2Ti0.8Hf0.2Sn and a+ve sign for the hyperfine field at Zr sites in the cubic (C15) Laves phase compound ZrFe2.  相似文献   

19.
The method of using natural track detectors, i.e., meteorite olivine crystals, is developed and improved applied to the problem of searching for superheavy nuclei in nature, in galactic cosmic rays (GCR). The new technique implements the sequence of etching, grinding, and track identification operations using the automated PAVICOM facility. The data on the track length and etching rate in combination with the results of calibration on heavy nucleus accelerators allowed the development of a technique for determining the GCR nucleus charge with an accuracy of ±2. On this basis, a significant set of experimental data on superheavy nuclei of natural origin was obtained (21743GCRheavy nucleiwithZ >20, including three nucleiwith a charge of 119?6+10). The minimum lifetime Tmin of the last-mentioned is within 50 years< Tmin < 100 years, which exceeds the lifetime of transfermium nuclei synthesized on accelerators by many orders of magnitude. The long-lived superheavy nuclei detected in the GCR spectrum can belong to the “stability island”.  相似文献   

20.
This article reports the results of experiments aimed at producing hypothetical long-lived superheavy elements located near the spherical-shell closures with Z≥114 and N≥72. For the synthesis of superheavy nuclei, we used a combination of neutron-rich reaction partners, with a 244Pu target and a 48Ca projectile. The sensitivity of the present experiment exceeded by more than two orders of magnitude previous attempts at synthesizing superheavy nuclides in reactions of 48Ca projectiles with actinide targets. We observed new decay sequences of genetically linked alpha decays terminated by spontaneous fission. The high measured alpha-particle energies, together with the long decay times and spontaneous fission terminating the chains, offer evidence for the decay of nuclei with high atomic numbers. The decay properties of the synthesized nuclei are consistent with the consecutive alpha decays originating from the parent nuclides 288,289114, produced in the 3n-and 4n-evaporation channels with cross sections of about a picobarn. The present observations can be considered experimental evidence for the existence of the “island of stability” of superheavy elements and are discussed in terms of modern theoretical approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号