首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study describes the development and validation of a selective liquid chromatographic (LC) method for the analysis of tenofovir disoproxil fumarate (TDF) and its related substances. The gradient method uses a base deactivated C18 column (Hypersil BDS column; 25 cm×4.6 mm I.D.) maintained at a temperature of 30°C. The mobile phases consist of acetonitrile, tetrabutylammonium/phosphate buffer pH 6.0 and water: (A; 2:20:78 v/v/v) and (B; 65:20:15 v/v/v). The flow rate is 1.0 mL/min and UV detection is performed at 260 nm. Good separation of TDF and 21 impurities was achieved. A system suitability test (SST) to check the quality of separation is also specified. The developed method was further validated with respect to robustness, precision, sensitivity and linearity. The method is proved to be robust, precise, sensitive and linear between 0.1 μg/mL and 0.15 mg/mL. The limit of detection and limit of quantification are 0.03 and 0.1 μg/mL, respectively. The method was successfully applied to the quantification of related substances and assay of commercial TDF samples (bulk substances and tablets).  相似文献   

2.
Antiretroviral fixed‐dose‐combination drugs are best assayed with high‐performance liquid chromatography, or liquid chromatography–tandem mass spectrometry. However, most scientists in developing nations have no access to these expensive instruments. A more affordable quantitative technique is the use of ultraviolet–visible spectroscopy—where often the absorption spectra of these antiretrovirals are overlapping; thus complex derivative methodologies are required for quantification. A simple, rapid, and accurate thin layer chromatography–ultraviolet spectrophotometric method for the quantification of binary mixtures of lamivudine, zidovudine, and tenofovir–disoproxil–fumarate in tablet formulations was developed. Lamivudine/tenofovir–disoproxil–fumarate and lamivudine/zidovudine were extracted and separated on glass thin‐layer chromatography plates. Drugs were identified in ultraviolet light at 254 nm and quantified in acidic medium using ultraviolet spectrophotometry. The retardation factors were 0.43, 0.79, and 0.81 for lamivudine, tenofovir–disoproxil–fumarate, and zidovudine, respectively, with corresponding absorption maxima at 270, 260, and 265 nm. Linearity ranged from 1 to 40 µg/mL for all drugs (R = 0.9998–0.9999), while recovery studies were 95.10–102.11% and amount in formulations ranged from 97.99 ± 0.63 to 101.47 ± 2.39%. The paired t‐test (n = 5) indicated no significant difference between the proposed and high‐performance liquid chromatography methods, hence comparable and can be used as an alternative method in routine quality determination of antiretroviral medicines.  相似文献   

3.
A sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of darunavir, ritonavir and tenofovir in human plasma. Sample preparation involved a simple liquid–liquid extraction using 200 μL of human plasma extracted with methyl tert‐butyl ether for three analytes and internal standard. The separation was accomplished on an Acquity UPLC BEH C18 (50 mm x 2.1 mm, 1.7 μm) analytical column using gradient elution of acetonitrile/methanol (80:20, v/v) and 5.0 mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4 mL/min. The linearity of the method ranged between 20.0 and 12 000 ng/mL for darunavir, 2.0 and 2280 ng/mL for ritonavir, and 14.0 and 1600 ng/mL for tenofovir using 200 μL of plasma. The method was completely validated for its selectivity, sensitivity, linearity, precision and accuracy, recovery, matrix effect, stability, and dilution integrity. The extraction recoveries were consistent and ranged between 79.91 and 90.04% for all three analytes and internal standard. The method exhibited good intra‐day and inter‐day precision between 1.78 and 6.27%. Finally the method was successfully applied for human pharmacokinetic study in eight healthy male volunteers after the oral administration of 600 mg darunavir along with 100 mg ritonavir and 100 mg tenofovir as boosters.  相似文献   

4.
In this study, for the first time, salt‐assisted liquid–liquid extraction was performed in a microchannel system. The proposed design is based on the increase of contact surface area between target analytes and extracting phase during the sample and extracting phase transfer in microchannel. In this method, first sample solution, extracting solvent, and salt were mixed by stirrer and simultaneously delivered into a microchannel using a syringe pump. In order to optimize the influential parameters on the extraction efficiency of the proposed method, zidovudine and tenofovir disoproxil fumarate were selected as model analytes. The main parameters such as extracting solvent and its volume, salt amount, pH of sample solution, and microchannel shape, length, and its inner diameter were investigated and optimized. Under the optimized conditions, the proposed method was linear in the range of 0.1–30 µg/mL and R2 coefficients were equal to 0.9922 and 0.9947 for zidovudine and tenofovir disoproxil fumarate, respectively. Extraction efficiency of the proposed method was compared with conventional salt‐assisted liquid–liquid extraction. The results show that the proposed design has higher extraction efficiency than conventional salt‐assisted liquid–liquid extraction. Finally, the proposed method was successfully applied for the determination of zidovudine and tenofovir disoproxil fumarate in plasma samples.  相似文献   

5.
A high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method for the simultaneous quantification of efavirenz, emtricitabine and tenofovir was developed and validated with 100 microL human plasma. Following solid-phase extraction, the analytes were separated using a gradient mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 316 to 168 for efavirenz, m/z 248-130 for emtricitabine and m/z 288-176 for tenofovir, m/z 482-258 for rosuvastatin (IS), m/z 260-116 for propranolol (IS). The method exhibited a 100-fold linear dynamic range for all the three analytes in human plasma (20-2000, 2-200 and 20-2000 ng/mL for efavirenz, emtricitabine and tenofovir respectively). The lower limit of quantification was 2 ng/mL for emtricitabine and 20 ng/mL for both efavirenz and tenofovir with a relative standard deviation of less than 11%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 4 min for each sample made it possible to analyze more than 250 human plasma samples per day. The method is precise and sensitive enough for its intended purpose. The method is also successfully applied to quantify efavirenz, emtricitabine and tenofovir concentrations in a rodent pharmacokinetic study.  相似文献   

6.
An HPLC method with DAD detection was developed and validated for the simultaneous determination of zofenopril and hydrochlorothiazide in tablets. The separation was carried out through a gradient elution using an Agilent LiChrospher C18 column (250×4.0 mm id, 5 μm) and a mobile phase consisting of (A) water–TFA (99.9:0.1 v/v) and (B) acetonitrile–TFA (99.1:0.1 v/v) delivered at a flow‐rate of 1.0 mL/min. 8‐Chlorotheophylline was used as internal standard. Calibration curves were found to be linear for the two drugs over the concentration ranges of 5.0–40 and 1.0–20 μg/mL for zofenopril and hydrochlorothiazide, respectively. Linearity, precision, accuracy, specificity and robustness were determined in order to validate the proposed method, which was further applied to the analysis of commercial tablets. The proposed method is simple and rapid, and gives accurate and precise results.  相似文献   

7.
A new, rapid, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous quantification of tenofovir and lamivudine in human plasma using abacavir as an internal standard. An API‐4000 LC‐MS/MS with electrospray ionization was operated in multiple‐reaction monitoring mode for the analysis. The analytes were extracted from plasma by solid‐phase extraction technique using an Oasis HLB cartridge. The reconstituted samples were chromatographed on a Chromolith ROD speed C18 column using a mixture of 0.1% formic acid in water and acetonitrile (90:10 v/v) at a flow‐rate of 1 mL/min. The method was validated as per the FDA guidelines. The calibration curves were found to be linear in the range of 5–600 ng/mL for tenofovir and 25– 4000 ng/mL for lamivudine. The intra‐ and inter‐day precision and accuracy results were well within the acceptable limits. A run time of 2.8 min consumed for each sample made it possible to analyze more samples per day. The proposed assay method was found to be applicable to a pharmacokinetic study in human male volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, short, and rugged LC–MS/MS method for the simultaneous determination of tenofovir, emtricitabine, elvitegravir and rilpivirine was developed and validated. Dried blood spots were prepared with 25 μL of spiked whole blood. A 3 mm punch was extracted with methanol containing labeled internal standards. Ten microliters was injected into the LC–MS/MS using isocratic mobile phase composed of 0.1% formic acid in water and 0.1% formic acid in acetonitrile (45: 55 v/v) at a flow rate of 0.25 mL/min. The method was validated in the range of 10–2000 ng/mL for all four analytes. The intra‐assay accuracy (RE) of the method was −4.73–4.78, 1.35–2.89, −8.89 to −0.49 and − 1.40–1.81 for tenofovir, emtricitabine, elvitegravir and rilpivirine, respectively. The inter‐assay accuracy was within ±15% of nominal and precision (CV) was <15%. The hematocrit effect on quantification was nonsignificant at the tested hematocrit levels (35–70%). The dried blood spot method showed good agreement with the plasma method, and hence can be used as an alternative to plasma method.  相似文献   

9.
《Analytical letters》2012,45(9):1539-1549
Abstract

A new simple, precise, rapid and selective HPLC-RP method has been developed for the simultaneous determination of Norfloxacin and Tinidazole in formulations, using 0.2 % Triethylamine (TEA) in water : Acetonitrile (80:20,v/v) and pH adjusted to 2.6 to 2.8 with Phosphoric acid, as a mobile phase, and C18 SHODEX column (5 micron, 25 cm × 3.9 mm, ID) as stationary phase. Detection was carried out using a UV detector at 311 nm Linearity range and percentage recoveries for Norfloxacin and Tinidazole were 20 - 200 μg/mL and 30 - 300 μg/mL, 999.91 % and 99.94 % respectively.  相似文献   

10.
 A simple, accurate and sensitive reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of cefuroxime axetil and ornidazole in combined tablet dosage form has been developed. The method was performed with a HiQ-SiL C18 column (250 mm×4.6 mm) and photodiode array (PDA) detector, using 0.01 mol/L potassium dihydrogen orthophosphate-methanol (56∶44, v/v) as the mobile phase and tinidazole as the internal standard. Beer’s law obeys in the concentration ranges of 5-25 μg/mL and 10-50 μg/mL for cefuroxime axetil and ornidazole, respectively. The method has been successfully validated statistically and applied for the analysis of the drugs in pharmaceutical formulation.  相似文献   

11.
Favipiravir, molnupiravir, and ritonavir have been recently approved as the first oral antivirals for treatment of SARS-CoV-2 viral infections. Their combination was reported in several clinical studies, alternatively, to enhance the viral eradication and improve patient's recovery times and rates. Being all orally administered, therefore, the development of new sensitive and validated methodologies for their simultaneous determination is a necessitate. In the proposed research, a sensitive, selective, and simple high-performance thin layer chromatography method was developed and validated for determination of favipiravir, molnupiravir, and ritonavir. Silica gel 60F254 thin layer chromatography plates were used as stationary phase for this separation using mobile phase composed of methylene chloride:ethyl acetate:methanol:25% ammonia (6:3:4:1, v/v/v/v). Densitometric detection was performed at wavelength 289 nm. Peaks of favipiravir, molnupiravir, and ritonavir were resolved at retention factors 0.22, 0.42, and 0.63, respectively. The proposed method was found linear within the specified ranges of 3.75–100.00 μg/mL for molnupiravir and favipiravir, and 2.75–100.00 μg/mL for ritonavir. Limits of detection were found to be 1.12, 1.21, and 0.89 μg/mL for favipiravir, molnupiravir, and ritonavir, respectively. This is the first method to be reported for the simultaneous determination of the cited three antiviral drugs. The method was assessed on novel greenness metrics.  相似文献   

12.
Docetaxel has significant single agent activity in prostate cancer and ketoconazole also has activity as a second line hormonal agent. In vitro, ketoconazole is synergistic with some chemotherapy agents by enhancing the intracellular retention of the cytotoxic agent. A potential drug-drug interaction exists though between docetaxel and ketoconazole because both agents are metabolized hepatically by the cytochrome P-450 system. Hence, a nanoparticulate system was formulated by loading both drugs for tumor targeting. Assay and in vitro release of the formulation were conducted by developing simple, precise, accurate, and validated analytical method for simultaneous determination docetaxel and ketoconazole using reversed-phase high-performance liquid chromatography (RP-HPLC). The RP-HPLC method was developed using Waters Symmetry C(18) column (25 cm × 4.5 mm, 5 μm) with a mobile phase consisting of acetonitrile and 0.2% triethylamine pH adjusted to 6.4 (48:52, v/v) at flow rate of 1 mL/min. Intra-day and inter-day variations were less than 2% over the linearity range, 0.5-20 μg/mL. The proposed two methods were successfully applied for the determination of docetaxel and ketoconazole in solid lipid nanoparticles.  相似文献   

13.
A new and reliable mass spectrometric method using an isotope dilution method in combination with matrix-assisted laser desorption/ionization-triple quadrupole tandem mass spectrometry (ID-MALDI-QqQ-MS/MS) has been developed and validated for the determination of concentrations of the antiretroviral drug tenofovir (TNV) in plasma from HIV-infected adults. The advantage of this new method is that (1) the method is ultrafast and (2) can be applied for high-throughput measurement of TNV in plasma. The method is based on a simple plasma deproteinization step in combination with the use of [adenine-(13) C(5) ]-TNV as the internal standard. TNV and [adenine-(13) C(5) ]-TNV were monitored by multiple reaction monitoring using the transition m/z 288.0 → 176.2 and m/z 293.2 → 181.2 for TNV and [adenine-(13) C(5) ]-TNV, respectively. The method was validated according to the most recent FDA guidelines for the development and validation of (new) bio-analytical assays. Validated method parameters were: linearity, accuracy, precision and stability of the method. The lowest limit of quantification was 0.10 μmol/l, whereas the limit of detection determined at a signal-to-noise ratio (S/N = 3:1) in pooled drug free human control plasma was 0.04 μmol/l. The validated method was successfully applied and tested for its clinical feasibility by the analysis of plasma samples from selected HIV-infected adults receiving the prodrug tenofovir disoproxil fumarate. Observed plasma TNV concentrations ranged between 0.11 and 0.76 μmol/l and measured plasma TNV concentrations were within the therapeutically relevant concentration range.  相似文献   

14.
High efficiency and less run time are the basic requirements of high-speed chromatographic separations. To fulfill these requirements, a new separation technique, ultra-performance liquid chromatography (UPLC), has shown promising developments. A rapid, specific, sensitive, and precise reverse-phase UPLC method is developed for the determination of nabumetone in tablet dosage form. In this work, a new isocratic chromatographic method is developed. The newly developed method is applicable for assay determination of the active pharmaceutical ingredient. The chromatographic separation is achieved on a Waters Acquity BEH column (100 mm, i.d., 2.1 mm, 1.7 μm) within a short runtime of 2 min using a mobile phase of 5 mM ammonium acetate-acetonitrile (25:75, v/v), at a flow rate of 0.3 mL/min at an ambient temperature. Quantification is achieved with photodiode array detection at 230 nm, over the concentration range of 0.05-26 μg/mL. Forced degradation studies are also performed for nabumetone bulk drug samples to demonstrate the stability-indicating power of the UPLC method. Comparison of system performance with conventional high-performance liquid chromatography is made with respect to analysis time, efficiency, and sensitivity. The method is validated according to the ICH guidelines and is applied successfully for the determination of nabumetone in tablets.  相似文献   

15.
A gradient liquid chromatographic (LC) method for control of emtricitabine (FTC) was validated for the analysis of FTC formulations (capsules and oral solution) and fixed-dose-combination tablets containing FTC [FTC combined with tenofovir disoproxil fumarate (TDF) and FTC combined with TDF and efavirenz (EFV)]. The method is based on the purity test recently prescribed in the International Pharmacopoeia and uses a Hypersil BDS C18 column (25 cm × 4.6 mm i.d.), 5 μm kept at a temperature of 35 °C. Other reversed-phase columns were also investigated. The mobile phases for gradient elution consist of acetonitrile, phosphate buffer and water. The flow rate is 1.0 mL min?1 and UV detection is performed at 280 nm. The method is capable of separating the main components from one another, from the inactive ingredients and from the main degradation products. The method was validated with respect to accuracy, precision, sensitivity and linearity for each component and the solution media were optimized. Finally, commercial FTC capsules, FTC oral solution, FTC/TDF tablets and FTC/TDF/EFV tablets were examined.  相似文献   

16.
A rapid, accurate, and precise HPLC method has been developed for simultaneous determination of four contraceptive hormonal compounds namely ethinylestradiol (EE), drospirenone (DR), gestodene (GS), and levonorgestrel (LV) in oral contraceptive tablet dosage form. The chromatographic separation was achieved on a C18 (150 × 4.6 mm, 5μ) column; the mobile phase consists of acetonitrile: water (50:50, v/v) pumped at a flow rate of 1.0 mL/min; and UV detection was set at 200 nm. The limit of detection was 0.0086 µg/mL for (EE), 0.0397 µg/mL for (GS), 2.80 µg/mL for (DR), and 0.229 µg/mL for (LV), whereas the limit of quantitation (LOQ) was 0.028 µg/mL for (EE), 0.132 µg/mL for (GS), 9.500 µg/mL for (DR), and 0763 µg/mL for (LV), respectively. The correlation coefficient (r) values of the four compounds ranged from 0.99995 to 0.99999. The method was validated as per ICH guidelines and USP 34 for estimation of (EE), (DR), (GS), and (LV) in commercially available tablet dosage form. The validation results were found satisfactory. The proposed method can be useful in quality control of bulk manufacturing and pharmaceutical dosage forms.  相似文献   

17.
Three methods are presented for the simultaneous determination of lamivudine and zidovudine. The first method depends on first derivative UV spectrophotometry, with zero-crossing and peak-to-base measurement. The first derivative amplitudes at 265.6 and 271.6 nm were selected for the assay of lamivudine and zidovudine, respectively. The second method depends on first derivative of the ratio-spectra by measurements of the amplitudes at 239.5 and 245.3 nm for lamivudine and 225.1 and 251.5 nm for zidovudine. Calibration graphs were established for 1-50 μg/ml for lamivudine and 2-100 μg/ml for zidovudine. In the third method (HPLC), a reversed-phase column with a mobile phase of methanol:water:acetonitrile (70:20:10 (v/v/v)) at 0.9 ml/min flow rate was used to separate both compounds with a detection of 265.0 nm. Linearity was obtained in the concentration range of 0.025-50 μg/ml for lamivudine and 0.15-50 μg/ml for zidovudine. All of the proposed methods have been extensively validated. These methods allow a number of cost and time saving benefits. The described methods can be readily utilized for analysis of pharmaceutical formulations. There was no significant difference between the performance of all of the proposed methods regarding the mean values and standard deviations. The described HPLC method showed to be appropriate for simultaneous determination of lamivudine and zidovudine in human serum samples.  相似文献   

18.
Ashenafi  Dunge  Ungerb&#;ck  Mattias  Hoogmartens  Jos  Adams  Erwin 《Chromatographia》2013,76(21):1495-1503

A gradient liquid chromatographic (LC) method for control of emtricitabine (FTC) was validated for the analysis of FTC formulations (capsules and oral solution) and fixed-dose-combination tablets containing FTC [FTC combined with tenofovir disoproxil fumarate (TDF) and FTC combined with TDF and efavirenz (EFV)]. The method is based on the purity test recently prescribed in the International Pharmacopoeia and uses a Hypersil BDS C18 column (25 cm × 4.6 mm i.d.), 5 μm kept at a temperature of 35 °C. Other reversed-phase columns were also investigated. The mobile phases for gradient elution consist of acetonitrile, phosphate buffer and water. The flow rate is 1.0 mL min−1 and UV detection is performed at 280 nm. The method is capable of separating the main components from one another, from the inactive ingredients and from the main degradation products. The method was validated with respect to accuracy, precision, sensitivity and linearity for each component and the solution media were optimized. Finally, commercial FTC capsules, FTC oral solution, FTC/TDF tablets and FTC/TDF/EFV tablets were examined.

  相似文献   

19.
This study describes a specific, precise, sensitive and accurate method for simultaneous determination of hydroxyzine, loratadine, terfenadine, rupatadine and their main active metabolites cetirizine, desloratadine and fexofenadine, in serum and urine using meclizine as an internal standard. Solid‐phase extraction method for sample clean‐up and preconcentration of analytes was carried out using Phenomenex Strata‐X‐C and Strata X polymeric cartridges. Chromatographic analysis was performed on a Phenomenex cyano (150 × 4.6 mm i.d., 5 μm) analytical column. A D‐optimal mixture design methodology was used to evaluate the effect of changes in mobile phase compositions on dependent variables and optimization of the response of interest. The mixture design experiments were performed and results were analyzed. The region of ideal mobile phase composition consisting of acetonitrile–methanol–ammonium acetate buffer (40 mm ; pH 3.8 adjusted with acetic acid): 18:36:46% v /v/v was identified by a graphical optimization technique using an overlay plot. While using this optimized condition all analytes were baseline resolved in <10 min. Solvent mixtures were delivered at 1.5 mL/min flow rate and analytes peaks were detected at 222 nm. The proposed bioanalytical method was validated according to US Food and Drug Administration guidelines. The proposed method was sensitive with detection limits of 0.06–0.15 μg/mL in serum and urine samples. Relative standard deviation for inter‐ and intra‐day precision data was found to be <7%. The proposed method may find application in the determination of selected antihistaminic drugs in biological fluids.  相似文献   

20.
This work is concerned with novel, accurate and precise determination of two common insecticides, imiprothrin and deltamethrin, using HPLC. The chromatographic conditions were optimised for the best separation. The column was Intersil ODS (4.6 x 250 mm with 5 µm particle size). The mobile phase consists of a mixture of acetonitrile and water (90:10, v/v) at a flow rate of 1.2 mL/min. UV detection was accomplished at 230 nm using chlorpyriphos as an internal standard. The method was validated according to International Conference on Harmonization (ICH) guidelines and was found to be linear over the range 7.5–45 µg/mL for imiprothrin and 5–30 µg/mL for deltamethrin. The method was applied to the assay of both insecticides in the combined spray formulation from the Egyptian market. Statistical comparison between the proposed and the reported methods showed no significant difference. The method can be applied for simultaneous determination of both compounds in different market products with high specificity and in quality control laboratories for insecticide residue monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号