首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The coupling of atomic and photonic resonances serves as an important tool for enhancing light‐matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic‐cladding wave guides, the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator is experimentally demonstrated. Specifically, cavity‐atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances is observed. Moreover, significant enhancement of the efficiency of all optical switching in the V‐type pump‐probe scheme is demonstrated. The coupled system of micro‐ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, dispersion engineering (e.g. slow and fast light) and metrology, as well as for the observation of important effects such as strong coupling, and Purcell enhancement.

  相似文献   


2.
Quantitative phase imaging (QPI), a method that precisely recovers the wavefront of an electromagnetic field scattered by a transparent, weakly scattering object, is a rapidly growing field of study. By solving the inverse scattering problem, the structure of the scattering object can be reconstructed from QPI data. In the past decade, 3D optical tomographic reconstruction methods based on QPI techniques to solve inverse scattering problems have made significant progress. In this review, we highlight a number of these advances and developments. In particular, we cover in depth Fourier transform light scattering (FTLS), optical diffraction tomography (ODT), and white‐light diffraction tomography (WDT).

  相似文献   


3.
Transformation optics, a recent geometrical design strategy of light manipulation with both ray trajectories and optical phase controlled simultaneously, promises an invisibility cloaking device that can render a macroscopic object invisible even to a scientific instrument measuring optical phase. Recent “carpet” cloaks have extended their cloaking capability to broadband frequency ranges and macroscopic scales, but they only demonstrated the recovery of ray trajectories after passing through the cloaks, while whether the optical phase would reveal their existence still remains unverified. In this paper, a phase‐preserved macroscopic visible‐light carpet cloak is demonstrated in a geometrical construction beyond two dimensions. As an extension of previous two‐dimensional (2D) macroscopic carpet cloaks, this almost‐three‐dimensional carpet cloak exhibits three‐dimensional (3D) invisibility for illumination near its center (i.e. with a limited field of view), and its ideal wide‐angle invisibility performance is preserved in multiple 2D planes intersecting in the 3D space. Optical path length is measured with a broadband pulsed‐laser interferometer, which provides unique experimental evidence on the geometrical nature of transformation optics.

  相似文献   


4.
Multi scale hierarchical structures underpin mechanical, optical, and wettability behavior in nature. Here we present a novel approach which can be used to mimic the natural hierarchical patterns in a quick and easy maskless fabrication. By using two‐beam interference lithography with angle‐multiplexed exposures and scanning, we have successfully printed large‐area complex structures having a cascading resolution and 3D surface profiles. By precisely controlling the exposure dose we have demonstrated a capability to create different 3D textured surfaces having comparable aspect ratio with period spanning from 4 μm to 300 nm (more than one order of magnitude) and the height spanning from 0.9 μm to 40 nm, respectively. Up to three levels of biomimetic hierarchical structures were obtained that show several natural phenomena: superhydrophobicity, iridescence, directionality of reflectivity, and polarization at different colors.

  相似文献   


5.
In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto‐second and atto‐second laser‐induced electrons are emitted from nanotips delivering coherent fast electron sources. Optical control of dispersion of the emitted electron waves, and optically controlled femto‐second switches for ultrafast electron detection are proposed. The first steps towards electron accelerators and matter optics on‐a‐chip are now being taken. New research fields are driven by these new technologies. One example is the optical generation of electron pulses on‐demand and quantum degenerate pulses. Another is the emerging development of interaction free electron microscopy. This review will focus on the field of free electron quantum optics with technologies at the interplay of lasers, electron matter waves, and nanostructures. Questions that motivate their development will also be addressed.

  相似文献   


6.
We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.

  相似文献   


7.
Holography is of great interest for both scientific research and industry applications, but it has always suffered from the strong dependence on wavelength and polarization of the incident light. Having revisited the Huygens–Fresnel principle, we propose a novel holography mechanism by elaborately choosing discrete point sources (PSs) and realize it experimentally by mimicking the radiated fields of these PSs through carefully designed photon‐nanosieves. Removing the modulation dispersion usually existing in traditional and metasurface holograms, our hologram empowers the simultaneous operation throughout the ultraviolet, entire visible and near‐infrared wavelength regions without polarization dependence. Due to the deep‐subwavelength dimension of nanosieves, this robust hologram offers a large angle‐of‐view of 40°×40° and possesses a lensing effect under a spherical‐wave illumination, which can work as a high‐resolution, lens‐less and distortion‐free microprojector that displays a 260× magnified image. It might open an avenue to a high‐tolerance holographic technique for electromagnetic and acoustic waves.

  相似文献   


8.
Leaky modes are below‐cutoff waveguide modes that lose part of their energy to the continuum of radiation modes during propagation. In photonic nanowire lasers, leaky modes have to compete with almost lossless above‐cutoff modes and are therefore usually prevented from crossing the lasing threshold. The situation is drastically different in plasmonic nanowire systems where the above‐cutoff plasmonic modes are very lossy because of their strong confinement to the metal surface. Due to gain guiding, the threshold gain of the hybrid electric leaky mode does not increase strongly with reduced wire diameter and stays below that of all other modes, making it possible to observe leaky‐mode lasing. Plasmonic ZnO nanowire lasers operating in the gain‐guided regime could be used as coherent sources of surface plasmon polaritons at the nanoscale or as surface plasmon emitting diodes with an emission angle that depends on the nanowire diameter and the color of the surface plasmon polariton.

  相似文献   


9.
Guiding light in the low index region of a high refractive index contrast waveguide can be beneficial for many applications including sensing, nonlinear optics and electro‐optics. Existing methods to achieve this goal suffer from fabrication complexity, large loss, or poor optical confinement. We propose a simple structure to achieve a significant enhancement of light confinement in the low index medium. We explain the guiding principle of this structure using geometrical optics, and suggest a number of applications where this guiding structure can provide significant performance benefits. The combination of simplicity, ease of fabrication, and good confinement makes this waveguide an attractive choice for a wide range of applications. To illustrate this, we consider the integration of a nonlinear polymer with a silicon photonic waveguide, and show that significantly better performance with an easier fabrication process can be achieved using this new scheme.

  相似文献   


10.
The future generation of modern illumination should not only be cheap and highly efficient, but also demonstrate high quality of light, light which allows better color differentiation and fidelity. Here we are presenting a novel approach to create a white solid‐state light source providing ultimate color rendition necessary for a number of applications. The proposed semi‐hybrid device combines a monolithic blue‐cyan light emitting diode (MBC LED) with a green‐red phosphor mixture. It has shown a superior color rendering index (CRI), 98.6, at correlated color temperature of around 3400 K. The MBC LED epi‐structure did not suffer from the efficiency reduction typical for monolithic multi‐color emitters and was implemented in the two most popular chip designs: “epi‐up” and “flip‐chip”. Redistribution of the blue and cyan band amplitudes in the white‐light emission spectrum, using the operating current, is found to be an effective tool for fine tuning the color characteristics.

  相似文献   


11.
Conventional optics is diffraction limited due to the cutoff of spatial frequency components, and evanescent waves allow subdiffraction optics at the cost of complex near‐field manipulation. Recently, optical superoscillatory phenomena were employed to realize superresolution lenses in the far field, but suffering from very narrow working wavelength band due to the fragility of the superoscillatory light field. Here, an ultrabroadband superoscillatory lens (UBSOL) is proposed and realized by utilizing the metasurface‐assisted law of refraction and reflection in arrayed nanorectangular apertures with variant orientations. The ultrabroadband feature mainly arises from the nearly dispersionless phase profile of transmitted light through the UBSOL for opposite circulation polarization with respect to the incident light. It is demonstrated in experiments that subdiffraction light focusing behavior holds well with nearly unchanged focal patterns for wavelengths spanning across visible and near‐infrared light. This method is believed to find promising applications in superresolution microscopes or telescopes, high‐density optical data storage, etc.

  相似文献   


12.
Femtosecond laser machining has been widely used for fabricating arbitrary 2.5 dimensional (2.5D) structures. However, it suffers from the problems of low fabrication efficiency and high surface roughness when processing hard materials. To solve these problems, we propose a dry‐etching‐assisted femtosecond laser machining (DE‐FsLM) approach in this paper. The fabrication efficiency could be significantly improved for the formation of complicated 2.5D structures, as the power required for the laser modification of materials is lower than that required for laser ablation. Furthermore, the surface roughness defined by the root‐mean‐square improved by an order of magnitude because of the flat interfaces of laser‐modified regions and untreated areas as well as accurate control during the dry‐etching process. As the dry‐etching system is compatible with the IC fabrication process, the DE‐FsLM technology shows great potential for application in the device integration processing industry.

  相似文献   


13.
Optical whispering‐gallery mode (WGM) microcavities featuring ultrahigh Q factors and small mode volumes enhance significantly the interaction between light and matter, becoming an excellent platform for achieving ultralow‐threshold microlasers. However, the emission of traditional WGMs is isotropic due to the rotational symmetry of cavity geometries, which hinders the potential photonics applications. In this review, the progress in WGM microcavities towards unidirectional laser emission is summarized. When a subwavelength scatterer is placed on the boundary of the microcavity, the unidirectional emission occurs due to the collimation effect of the microcavity‐enhanced scattering field. Furthermore, microcavities deformed from the circular shapes can not only produce the chaos‐assisted unidirectional emission, but also maintain high Q factors by special design and fabrication processes. Finally, gratings along the circumference of the WGM microdisk or microring can scatter the WGMs in the vertical direction. The review also lists several important applications of these types of microcavities, such as wide‐band laser illumination source, free‐space coupling, evanescent‐field enhancement, optical energy storage, and sensing.

  相似文献   


14.
Spatial overlap between the electromagnetic fields and the analytes is a key factor for strong light‐matter interaction leading to high sensitivity for label‐free refractive index sensing. Usually, the overlap and therefore the sensitivity are limited by either the localized near field of plasmonic antennas or the decayed resonant mode outside the cavity applied to monitor the refractive index variation. In this paper, by constructing a metal microstructure array‐dielectric‐metal (MDM) structure, a novel metamaterial absorber integrated microfluidic (MAIM) sensor is proposed and demonstrated in terahertz (THz) range, where the dielectric layer of the MDM structure is hollow and acts as the microfluidic channel. Tuning the electromagnetic parameters of metamaterial absorber, greatly confined electromagnetic fields can be obtained in the channel resulting in significantly enhanced interaction between the analytes and the THz wave. A high sensitivity of 3.5 THz/RIU is predicted. The experimental results of devices working around 1 THz agree with the simulation ones well. The proposed idea to integrate metamaterial and microfluid with a large light‐matter interaction can be extended to other frequency regions and has promising applications in matter detection and biosensing.

  相似文献   


15.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


16.
This article presents a novel III‐V on silicon laser. This work exploits the phenomenon that a passive silicon cavity, side‐coupled to a III‐V waveguide, will provide high and narrow‐band reflectivity into the III‐V waveguide: the resonant mirror. This results in an electrically pumped laser with a threshold current of 4 mA and a side‐mode suppression ratio up to 48 dB.

  相似文献   


17.
Periodic structures with a sub‐wavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves. While the use of these structures in waveguide optics was proposed in the 1990s, it has been with the more recent developments of silicon photonics and high‐precision lithography techniques that sub‐wavelength structures have found widespread application in the field of photonics. This review first provides an introduction to the physics of sub‐wavelength structures. An overview of the applications of sub‐wavelength structures is then given including: anti‐reflective coatings, polarization rotators, high‐efficiency fiber–chip couplers, spectrometers, high‐reflectivity mirrors, athermal waveguides, multimode interference couplers, and dispersion engineered, ultra‐broadband waveguide couplers among others. Particular attention is paid to providing insight into the design strategies for these devices. The concluding remarks provide an outlook on the future development of sub‐wavelength structures and their impact in photonics.

  相似文献   


18.
An all‐optical phase modulation method for the linear readout of integrated interferometric biosensors is demonstrated, merging simple intensity detection with the advantages offered by spectral interrogation. The phase modulation is introduced in a simple and cost‐effective way by tuning a few nanometers the emission wavelength of commercial laser diodes, taking advantage of their well‐known drawback of power–wavelength dependence. The method is applied to the case of a bimodal waveguide (BiMW) interferometric biosensor, fabricated with standard silicon technology and operated at visible wavelengths, rendering a detection limit of 4 × 10 7 refractive index units for bulk sensing. The biosensing capabilities of the phase‐linearized BiMW device are assessed through the quantitative immunoassay of C‐reactive protein, a key protein in inflammatory processes. This method can be applied to any modal interferometer.

  相似文献   


19.
Subwavelength features in conjunction with light‐guiding structures have gained significant interest in recent decades due to their wide range of applications to particle and atom trapping. Lately, the focus of particle trapping has shifted from the microscale to the nanoscale. This few orders of magnitude change is driven, in part, by the needs of life scientists who wish to better manipulate smaller biological samples. Devices with subwavelength features are excellent platforms for shaping local electric fields for this purpose. A major factor that inhibits the manipulation of submicrometer particles is the diffraction‐limited spot size of free‐space laser beams. As a result, technologies that can circumvent this limit are highly desirable. This review covers some of the more significant advances in the field, from the earliest attempts at trapping using focused Gaussian beams, to more sophisticated hybrid plasmonic/metamaterial structures. In particular, examples of emerging optical trapping configurations are presented.

  相似文献   


20.
In the development of microfluidic chips, conventional 2D processing technologies contribute to the manufacturing of basic microchannel networks. Nevertheless, in the pursuit of versatile microfluidic chips, flexible integration of multifunctional components within a tiny chip is still challenging because a chip containing micro‐channels is a non‐flat substrate. Recently, on‐chip laser processing (OCLP) technology has emerged as an appealing alternative to achieve chip functionalization through in situ fabrication of 3D microstructures. Here, the recent development of OCLP‐enabled multifunctional microfluidic chips, including several accessible photochemical/photophysical schemes, and photosensitive materials permiting OCLP, is reviewed. To demonstrate the capability of OCLP technology, a series of typical micro‐components fabricated using OCLP are introduced. The prospects and current challenges of this field are discussed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号