首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical polymers are a promising material of choice in the development of hybrid silicon photonics devices. Particularly, recent progress in electro‐optic (EO) active polymers has shown a strong Pockels effect. A ring resonator modulator is a vital building block for practical applications, such as signal processing, routing, and monitoring. However, the properties of the hybrid silicon and EO polymer ring modulators are still far from their theoretical limits. Here, we demonstrate a unique design of a hybrid ring resonator modulator simply located onto a silicon‐on‐insulator (SOI) substrate. Extra doping and etching of the SOI wafer is not required, even so we measured an in‐device electro‐optic coefficient r33 = 129 pm/V. The ring modulator exhibited a high sensitivity of the electrically tunable resonance, which enabled a 3 dB bandwidth of up to 18 GHz. The proposed technique will enable efficient mass‐production of the micro‐footprint modulators and promote the development of integrated silicon photonics.  相似文献   

2.
肖廷辉  于洋  李志远 《物理学报》2017,66(21):217802-217802
近年来硅基光子学已经慢慢走向成熟,它被认为是未来取代电子集成电路,实现下一代更高性能的光子集成电路的关键技术.这得益于硅基光子器件与现代的互补金属氧化物半导体工艺相兼容,能够实现廉价的大规模集成.然而,由于受硅材料本身的光电特性所限,在硅基平台上实现高性能的有源器件仍然存在着巨大挑战.石墨烯-硅基混合光子集成电路的发展为解决这一问题提供了可行的方案.这得益于石墨烯作为一种兼具高载流子迁移率、高电光系数和宽带吸收等优点的二维光电材料,能够方便地与现有硅基器件相集成,并充分发挥自身的光电性能优势.本文结合我们课题组在该领域研究的一些最新成果,介绍了国际上在石墨烯-硅基混合光子集成电路上的一些重要研究进展,涵盖了光源、光波导、光调制器和光探测器四个重要组成部分.  相似文献   

3.
Graphene photonics has emerged as a promising platform for providing desirable optical functionality. However, graphene's monolayer‐scale thickness fundamentally restricts the available light matter interaction, posing a critical design challenge for integrated devices, particularly in wavelength regimes where graphene plasmonics is untenable. While several plasmonic designs have been proposed to enhance graphene light interaction in these regimes, they suffer from substantial insertion loss due to metal absorption. Here we report a non‐resonant metamaterial‐based waveguide platform to overcome the design bottleneck associated with graphene device. Such metamaterial structure enables low insertion loss even though metal is being utilized. By examining waveguide dispersion characteristics via closed‐form analysis, it is demonstrated that the metamaterial approach can provide optimized optical field that overlaps with the graphene monolayer. This enables graphene‐based integrated components with superior optical performance. Specifically, the metamaterial‐assisted graphene modulator can provide 5‐fold improvement in extinction ratio compared to Si nanowire, while reducing insertion loss by one order magnitude compared to plasmonic structures. Such a waveguide configuration thus allows one to maximize the optical potential that graphene holds in the telecom and visible regimes.  相似文献   

4.
Here we propose a design for a novel broadband silicon electro-optic absorption modulator. The device is simply a 100 µm long silicon waveguide with a Schottky diode integrated in it. Modulation is achieved through free-carrier absorption, not interference effects, enabling operation over the entire bandwidth of the waveguide. The high overlap between the modulated carrier density and the optical mode enables high speed (> 10 Gb/s), small footprint and modulation depths of ∼ 4.6 dB.  相似文献   

5.
Fast, compact, and power-efficient silicon microcavity electro-optic modulators are expected to be critical components for chip-level optical interconnects. It is highly desirable that these modulators can be driven by voltage swings of 1 V or less to reduce power dissipation and make them compatible with voltage supply levels associated with current and future complementary metal-oxide-semiconductor technology nodes. Here, we present a silicon racetrack resonator modulator that achieves over 8 dB modulation depth at 12.5 Gbps with a 1 V swing. In addition, the use of a racetrack resonator geometry relaxes the tight lithography resolution requirements typically associated with microring resonators and enhances the ability to use common lithographic optical techniques for their fabrication.  相似文献   

6.
Compact electro‐optic (EO) modulators are desirable for a number of applications. In this study, a ring modulator has been fabricated in the titanium dioxide (TiO2) core and EO polymer cladding waveguide structure. A 250‐nm thick TiO2 core was utilized to minimize the ring radius down to 100 μm, to avoid using the top cladding between the EO polymer and the electrode, and to improve the poling efficiency. The resonance obtained by the ring modulator was observed to shift by 0.02 nm/V due to the enhanced in‐device EO coefficient of 105 pm/V. A modulation depth of 3 dB was observed at the frequency response function at 20 kHz using 2‐V Vp–p clock signal.  相似文献   

7.
王尘  许怡红  李成  林海军 《物理学报》2017,66(19):198502-198502
本文报道了在SOI衬底上外延高质量单晶Ge薄膜并制备高性能不同尺寸Ge PIN波导光电探测器.通过采用原子力显微镜、X射线衍射、拉曼散射光谱表征外延Ge薄膜的表面形貌、晶体质量以及应变参数,结果显示外延Ge薄膜中存在约0.2%左右的张应变,且表面平整,粗糙度为1.12 nm.此外,通过暗电流、光响应度以及3 dB带宽的测试来研究波导探测器的性能,结果表明尺寸为4μm×20μm波导探测器在-1 V的反向偏压下暗电流密度低至75 mA/cm~2,在1.55μm波长处的响应度为0.58 A/W,在-2 V的反向偏压下的3 dB带宽为5.5 GHz.  相似文献   

8.
Ahland  A.  Schulz  D.  Voges  E. 《Optical and Quantum Electronics》2000,32(6-8):769-780
To exploit the vast bandwidth of optical communication systems for high bit-rate long-haul transmission, external modulators show a better system performance than directly modulated lasers. One of the main advantages of electroabsorption modulators (EAM's) compared with Mach–Zehnder modulators is the possibility to integrate the modulator with a laser having the same active layer. This reduces processing complexity and system costs. Usually the quantum confined Stark effect results in a red shift of the absorption, which leads to a small gain due to a detuned operation of the integrated laser. In contrast, blue shift structures have been proposed for these integrated devices as they show both good laser and modulator properties. These structures suffer from the drawback that saturation effects may occur for higher optical power as these devices absorb the optical power at low applied bias. The aim of this paper is to investigate the influence of nonlinear saturation effects like carrier accumulation, Burnstein–Moss-effect and carrier screening.  相似文献   

9.
Electro-optic (EO) polymer modulators are very promising in the realization of cost-effective and high-performance optical transmissions. In this article, general strategies and specific designs of the traveling wave electrodes in EO polymer modulators were presented to reduce the modulator drive power while maintaining a broadband response. The optimum device parameters and corresponding conditions were estimated using finite element method based on electrode design. In calculating the results, the comprehensive characteristics of polymer modulator with 1.21 V half-wave voltage and 91 GHz bandwidth was demonstrated with electro-optic interaction length is 20 mm, electro-optic coefficient is 55 pm/V, and operation wavelength is 1.319 μm. These results agree with the 0.8 V half-wave voltage and 30 mm electro-optic interaction length reported in Science. In the five designs presented, a hybrid electrode structure combining CPW and microstrip lines were advanced. The characteristics of this structure are like that of microstrip lines with a single-arm electrode on one arm of the waveguide, but it solves the problem of microstrip to coaxial line transition and corona polarization.  相似文献   

10.
Rib microwaveguides are demonstrated on silicon-on-insulator substrates with Si film thickness of either 380 or 200 nm and a width of 1 microm. Corner mirrors that allow compact 90 degrees turns between two perpendicular waveguides are characterized. Measured propagation losses are approximately 0.4 dB/cm and approximately 0.5 dB/cm for 380-nm and 200-nm Si film, respectively, and mirror losses are approximately 1 dB. This allows the development of applications such as optical interconnects in integrated circuits over propagation distances larger than several centimeters.  相似文献   

11.
位错型微机械可变光衰减器的研究   总被引:6,自引:2,他引:4  
介绍了一种基于微机械技术实现的可变光衰减器,通过微电磁驱动器改变输入输出光纤之间的径向偏移量来调整衰减量。基于波导传输理论分析确定了器件的结构参量,并通过集成电路微细加工工艺实现了器件的制作和封装。测试结果表明,该可变光衰减器的插入损耗小于1dB,动态范围约35dB,工作电压小于5V,偏振相关损耗小于0.1dB,体积为20mm×15mm×8mm,有望为全光网提供一种低成本,高性能的光通信器件。  相似文献   

12.
A small footprint integrated optical amplifier on Silicon-on-insulator is proposed in this article. By choosing to use optical pumping to drive the device, electrical contacting is avoided and the active waveguide can be made as thin as 100?nm, maximizing the optical confinement in the quantum well layers. Furthermore, the optical pumping is done through the silicon waveguide layer to optimally use the pump light. This leads to a compact device with high gain. We show 8?dB gain in pulsed regime in a 100?μm long device using a peak pump power of only 4.5?mW, while a comparable gain using an electrically pumped device would require an order of magnitude higher power consumption. This is an important step towards a CMOS-compatible optical amplifier for intra-chip optical interconnects.  相似文献   

13.
Chip-scale integration of optoelectronic devices such as lasers, waveguides, and modulators on silicon is prevailing as a promising approach to realize future ultrahigh speed optical interconnects. We review recent progress of the direct epitaxy and fabrication of quantum dot (QD) lasers and integrated guided-wave devices on silicon. This approach involves the development of molecular beam epitaxial growth of selforganized QD lasers directly on silicon substrates and their monolithic integration with amorphous silicon waveguides and quantum well electroabsorption modulators. Additionally, we report a preliminary study of long-wavelength (> 1.3 μm) QD lasers grown on silicon and integrated crystalline silicon waveguides using membrane transfer technology.  相似文献   

14.
This paper describes improved results when comparing cascaded traveling wave electro absorption modulator (TWEAM) to non-cascaded TWEAM by simulation. Large signal modeling is used for both types of modulators to achieve 4 and 10 dB extinction ratios (ERs) with flat frequency response for applications in short distance as well as long distance optical fiber communication. To obtain 4 and 10 dB ERs with 110 GHz 3 dB bandwidth, a cascaded TWEAM requires 0.4 V peak to peak (VP-P) and 1 VP-P input driving voltages respectively. A non-cascaded TWEAM requires about two times the input driving voltage compared to the cascaded modulator to achieve the same values of ER and 3 dB bandwidth. Both modulators have been simulated with the same bias and also use the same circuit parameters except for the total active segment lengths (1 and 0.5 mm for cascaded and non-cascaded modulator respectively) and microstrip lengths to obtain the same ERs and 3 dB bandwidths.  相似文献   

15.
Electric-field drive optical modulators using a Si ring resonator were fabricated on silicon-on-insulator (SOI) wafers. The fabricated resonators consisted of Si waveguides with width and thickness of 1.0 and 0.3 μm, respectively. In order to induce the linear electro-optic (EO) effect in the Si core layer, the strain was applied by covering the layer with Si3N4 film (0.26 μm thick) deposited by low pressure chemical vapor deposition (LPCVD) at 750 °C. The vertical electric-field was applied to the Si waveguide through the top and bottom cladding layers, and the optical output from the drop port at the resonance wavelength was measured. At a wavelength of 1501.6 nm, the optical modulation of 33% was obtained at 200V (electric-field at the silicon surface ∼3 × 105 V/cm, nearly the breakdown field). The resonance wavelength was shifted toward the short wavelength side by applying both positive and negative voltages, this shift was explained by carrier concentration modulation. The linear EO effect in the Si core layer was not observed, presumably because the strain in the Si core layer was too small.  相似文献   

16.
Free‐standing ternary InGaAs nanowires (NW) are at the core of intense investigations due to their integration capabilities on silicon (Si) for next‐generation photovoltaics, integrated photonics, tunneling devices, and high‐performance gate all‐round III–V/Si NW transistors. In this review, recent progress on the growth, structural, optical and electrical properties of InGaAs NWs on Si substrate is highlighted. Particular focus is on a comparison between conventional catalyst‐assisted and catalyst‐free growth methods as well as self‐assembled versus site‐selectively grown NW arrays. It will be shown that catalyst‐free, high‐periodicity NW arrays with extremely high compositional uniformity are mandatory to allow un‐ambiguous structure–property correlation measurements. Here, interesting insights into the electronic/optical properties of wurtzite, zincblende and mixed crystal phases of InGaAs will be highlighted based on recent photoluminescence spectroscopy data. Finally, the InGaAs NW‐on‐Si system is also discussed in the realms of heterojunction properties, providing a promising system for steep‐slope tunneling field effect transistors in future low‐power post‐CMOS intergrated microelectronics and broad‐band photoabsorption and detec‐tion devices. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
王立军 Sala.  RP 《发光学报》1993,14(4):384-386
半导体电光波导调制器是半导体集成光学中具有代表性的器件之一,在光纤通讯、光信息处理等方面有着广阔的应用前景。它能和半导体激光器、探测器、电子线路等各种光、电元件实现单片集成,使设备和系统减少接口,缩小体积,提高可靠性。随着光通讯的发展,半导体调制器件的研究也越来越受到重视,在理论分析、结构设计、材料研制和器件工艺技术等方面也都取得了很大进展。由于GaAs材料具有良好的电、光性能,首先被用于制作GaAs光波导Mach-Zehnder干涉调制器中。  相似文献   

18.
孙飞  余金中 《物理》2005,34(1):50-54
随着器件结构与制作工艺的不断创新与完善,硅基发光器件已经可以实现室温下的有效工作,外量子效率可达到0.1%;低功耗的硅基高速调制器件的调制速率达到1GHz以上;而硅基光探测器对1300nm与1550nm波长的探测响应度也已分别达到了0.16mA/W和0.08mA/W.文章对硅基光电器件的研究进展情况进行了概述,并着重对几种器件的结构及工作原理进行了分析.  相似文献   

19.
不断提高以掺铒光纤为核心的光纤器件功率是研究与应用领域中的一个重要课题。高功率光纤器件内能量聚集会发热升温,造成器件光谱参数性能显著变化,进而造成以掺铒光纤为核心的光学器件的性能发生显著变化。因此对掺铒光纤在大温度范围下的光谱性能进行研究具有重要意义。利用斯塔克能级展宽理论建立了掺铒光纤吸收系数与温度的关系模型,在此基础上结合McCumber理论仿真计算了掺铒光纤荧光寿命与温度的关系。以OFS-MP980型掺铒光纤为实验对象,测量了掺铒光纤在常温至900 ℃范围内的吸收光谱、发射光谱。结果表明,温度升高造成980 nm波段吸收系数整体下降,且吸收系数的峰值波长增加,平均增加率0.625 nm/100 ℃。1 530 nm波段吸收系数整体展宽,且峰值吸收系数下降,平均下降率为-0.19 dB/100 ℃。600 ℃以内荧光寿命随温度呈近似线性下降,下降率为-0.23 ms/100 ℃。600 ℃以内理论模型能够反应温度造成峰值吸收系数、荧光寿命近似线性变化的趋势。  相似文献   

20.

Electro-optic (EO) polymer modulators are very promising in the realization of cost-effective and high-performance optical transmissions. In this article, general strategies and specific designs of the traveling wave electrodes in EO polymer modulators were presented to reduce the modulator drive power while maintaining a broadband response. The optimum device parameters and corresponding conditions were estimated using finite element method based on electrode design. In calculating the results, the comprehensive characteristics of polymer modulator with 1.21 V half-wave voltage and 91 GHz bandwidth was demonstrated with electro-optic interaction length is 20 mm, electro-optic coefficient is 55 pm/V, and operation wavelength is 1.319 μm. These results agree with the 0.8 V half-wave voltage and 30 mm electro-optic interaction length reported in Science. In the five designs presented, a hybrid electrode structure combining CPW and microstrip lines were advanced. The characteristics of this structure are like that of microstrip lines with a single-arm electrode on one arm of the waveguide, but it solves the problem of microstrip to coaxial line transition and corona polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号