首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
初应力对压电层状结构声表面波传播性能的影响   总被引:4,自引:0,他引:4  
刘华  王铁军  王子昆 《力学学报》2000,32(4):491-496
研究了压电层状结构中初应力对广义Rayleigh波传播相速度和机电耦合性能的影响,通过求解含初应力的运动微分方程,对自由界面电学开路和短路两种情况得到了相应的相速度方程。给出了具体的数值算例,所得结果对于提高和改善声表面波器件性能有参考意义。  相似文献   

2.
To investigate the features of Love waves in a layered functionally graded piezoelectric structure, the mathematical model is established on the basis of the elastic wave theory, and the WKB method is applied to solve the coupled electromechanical field differential equation. The solutions of the mechanical displacement and electrical potential function are obtained for the piezoelectric layer and elastic substrate. The dispersion relations of Love waves are deduced for electric open and short cases on the free surface respectively. The actual piezoelectric layer–elastic substrate systems are taken into account, and some corresponding numerical examples are proposed comparatively. Thus, the effects of the gradient variation about material constants on the phase velocity, the group velocity, the coupled electromechanical factor and the cutoff frequency are discussed in detail. So the propagation behaviors of Love waves in inhomogeneous medium is revealed, and the dispersion and the anti-dispersion are analyzed. The conclusions are significant both theoretically and practically for the surface acoustic wave devices.  相似文献   

3.
We investigate analytically the effect of initial stress in piezoelectric layered structures loaded with viscous liquid on the dispersive and attenuated characteristics of Love waves, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of initial stress in the piezoelectric layer and the viscous coefficient of the liquid on the phase velocity of Love waves are analyzed. Numerical results are presented and discussed. The analytical method and the results can be useful for the design of chemical and biosensing liquid sensors.  相似文献   

4.
An analytical approach is used to investigate the effects of covering layer thickness on the propagation behavior of Love waves in functionally graded piezoelectric materials (FGPMs) covered with a dielectric layer. The piezoelectric substrate is polarized in the direction perpendicular to the wave propagation plane, and its material parameters change continuously along the thickness direction. The dispersion equations for the existence of Love waves with respect to phase velocity are obtained for electrically open and shorted cases, respectively. A detailed investigation of the effects of the covering dielectric layer thickness on dispersion curve, phase velocity, group velocity, and electromechanical coupling factor is carried out. Numerical results show that for a given FGPM, the covering dielectric layer thickness affects significantly the fundamental mode of Love waves but has only negligible effects on the high-order modes. The changes in phase velocity, group velocity, and electromechanical coupling factor due to the change of gradient coefficient of FGPMs could be approached approximately by changing the thickness of the covering dielectric layer, which imply a potential factor for designing new-type surface wave devices with FGPMs.  相似文献   

5.
偏压电场对压电板中Lamb波相速度的影响   总被引:1,自引:0,他引:1  
本文研究了偏压电场作用下,Lamb波在压电板中的传播行为,首先给出了偏压电场作用时压电板中的应力场及电位移场,然后通过求解含初应力及初电位移的小幅波动问题的耦合方程,分别给出了Lamb波的对称模态和反对称模态的相速度方程,以典型的PZT-5H压电陶瓷板为例进行了数值计算,并讨论了偏压电场对Lamb波相速度及频散曲线的影响,结果表明,偏压电场可以显著地改变Lamb波的传播速度,借此可使声波器件获得延时效果。  相似文献   

6.
非均匀压电层状结构中Love波的传播   总被引:4,自引:0,他引:4  
刘华  匡震邦  蔡正敏 《力学学报》2003,35(4):485-488
讨论材料参数沿厚度方向发生连续缓慢变化时的各向同性弹性基底上有一等厚压电覆盖层肘Love波的传播性能.给出了压电层的厚度和基底材料的非均匀性对频散曲线的影响.  相似文献   

7.
In this theoretical study, we investigate the propagation of Love waves in a layered structure consisting of two different homogenous piezoelectric materials, an upper layer and a substrate. A functionally graded piezoelectric material (FGPM) buffer layer is in between the upper layer and the substrate. We employ the power series technique to solve the governing differential equations with variable coefficients. The influence of the gradient coefficients of FGPM and the layer thicknesses on the dispersion relations, the electro-mechanical coupling factor, and the stress distributions of Love waves in this structure are investigated. We demonstrate that the low gradient coefficient raises the significant variation of the phase velocity within a certain range of ratios of upper layer thickness to equivalent thickness. The electro-mechanical coupling factor can be increased when the equivalent thickness equals one or two wavelengths, and the discontinuity of the interlaminar stress can be eliminated by the FGPM buffer layer. The theoretical results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices using the FGPM buffer layer, but also for the measurement of material properties in such FGPM layered structures using Love waves.  相似文献   

8.
A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer. Dispersion equations are obtained for unelectroded and traction-free upper surfaces which, in the limit, can be reduced to those for classical Love waves. Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation, including its thickness, mass density, dielectric constant and elastic coefficient. It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation, its mass density and dielectric constant have negligible influence. On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface, the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic substrate systems. Upon comparing with the predictions obtained by employing the traditional shear-lag model, the present three-layer structure model is found to be more accurate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model, especially for long waves when the piezoelectric layer is relatively thin.  相似文献   

9.
对于覆盖层与基底介质极化方向相反的压电状半空间,在自由表面电学开路和短路两种情况下,分析用解析的方法以了Bleustein-Gulyaev波传播的相速度方程或相速度的表达式;以工程技术中应用的压电材料为例考察了波速随覆盖厚度h的变化规律,为了分析表面金属薄膜对波的传播速度的影响,计算了机电耦合系数k^2与h的关系,结果表明:层状结构B-G波传播时具有很小的穿透深度,同时在h取适当值时依然可使k^2  相似文献   

10.
The propagation of surface acoustic waves in layered piezoelectric structures withinitial stresses is investigated.The phase velocity equations are obtained for electrically free andshorted cases,respectively.Effects of the initial stresses on the phase velocity and the electrome-chanical coupling coefficient for the fundamental mode of the layered piezoelectric structures arediscussed.Numerical results for the c-axis oriented fihn of LiNbO_3 on a sapphire substrate aregiven.It is found that the fractional change in phase velocity is a linear function with the ini-tial stresses,and the electromechanical coupling factor increases with an increase of the absolutevalues of the compressive initial stresses.The results are useful for the design of surface acousticwave devices.  相似文献   

11.
The existence and behaviour of electro-elastic surface Love waves in a structure consisting of a piezoelectric substrate of crystal classe 6, 4, 6 mm, 4 mm, 622 or 422, an elastic layer and a dielectric medium is considered. The mathematical model obtained includes all the above crystal classes, i.e. the surface wave problems related to all these classes are presented in a single mathematical model. The dispersion equation for the existence of Love surface waves with respect to phase velocity is obtained. A detailed investigation of the electromechanical coupling coefficient is carried out depending on the dielectric and piezoelectric parameters of the problem. Geometrical investigation of the solutions of the dispersion equation is carried out.  相似文献   

12.
The propagation behavior of Love waves in a functionally graded material layered non-piezoelectric half-space with initial stress is taken into account. The Wentzel–Kramers–Brillouin (WKB) technique is adopted for the theoretical derivations. The analytical solutions are obtained for the dispersion relations and the distributions of the mechanical displacement and stress along the thickness direction in the layered structure. First, these solutions are used to study the effects of the initial stress on the dispersion relations and the group and phase velocities, then the influences of the initial stress on the distributions of the mechanical displacement and shear stresses along the thickness direction are discussed in detail. Numerical results obtained indicate that the phase velocity of the Love waves increases with the increase in the magnitude of the initial tensile stress, while decreases with the increase in the magnitude of the initial compression stress. The effects on the dispersion relations of the Love wave propagation are negligible as the magnitudes of the initial stress are less than 100 MPa. Some other results are obtained for the distributions of field quantities along thickness direction. The results obtained are not only meaningful for the design of functionally graded structures with high performance but also effective for the evaluation of residual stress distribution in the layered structures.  相似文献   

13.
An analytical treatment is presented for the propagation of harmonic waves in magneto-electro-elastic multilayered plates, where the general anisotropic and three-phase coupled constitutive equations are used. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The global propagator matrix is obtained by propagating the solution in each layer from the bottom of the layered plate to the top using the continuity conditions of the field variables across the interfaces. From the global propagator matrix, we finally obtain the dispersion relation by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. Dispersion curves, modal shapes, and natural frequencies are presented for layered plates made of orthotropic elastic (graphite–epoxy), transversely isotropic PZT-5A, piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials. While the numerical results show clearly the influence of different stacking sequences as well as material properties on the field response, the general methodology presented in the paper could be useful to the analysis and design of layered composites made of smart piezoelectric and piezomagnetic materials.  相似文献   

14.
Love waves propagating in a layered structure with an elastic layer deposited on a piezoelectric substrate are analytically investigated. We present a general dispersion equation that describes the properties of Love waves in the structure. A detailed discussion regarding the dispersion equation is presented, and the parameters for Love-mode sensors are also introduced. The properties of Love waves are illustrated by means of sample results for a layered structure with an SiO2 layer sputtered on an ST-cut 90°X-propagating quartz substrate. Interestingly, we found that a threshold-normalized layer thickness existed for the fundamental Love mode in such a structure.  相似文献   

15.
In this paper, we analyze the propagation of Bleustein–Gulyaev waves in an unbounded piezoelectric half-space loaded with a viscous liquid layer of finite thickness within the linear elastic theories. Exact solutions of the phase velocity equations are obtained in the cases of both electrically open circuit and short circuit by solving the equilibrium equations of piezoelectric materials and the diffusion equation of viscous liquid. A PZT-5H/Glycerin system is selected to perform the numerical calculation. The results show that the mass density and the viscous coefficient have different effects on the propagation attenuation and phase velocity under different electrical boundary conditions. In particular, the penetration depth of the waves is of the same order as the wavelength in the case of electrically short circuit. These effects can be used to manipulate the behavior of the waves and have implications in the application of acoustic wave devices.  相似文献   

16.
The dispersion behavior of the shear horizontal (SH) waves in the coupled structure consisting of a piezomagnetic substrate and an orthorhombic piezoelectric layer is investigated with different cut orientations. The surface of the piezoelectric layer is mechanically free, electrically shorted, or open, while the surface of the piezomagnetic substrate is mechanically free, magnetically open, or shorted. The dispersion relations are derived for four electromagnetic boundary conditions. The dispersion characteristics are graphically illustrated for the layered structure with the PMN-PT layer perfectly bonded on the CoFe2O4 substrate. The effects of the PMN-PT cut orientations, the electromagnetic boundary conditions, and the thickness ratio of the layer to the substrate on the dispersion behavior are analyzed and discussed in detail. The results show that, (i) the effect of the cut orientation on the dispersion curves is very obvious, (ii) the electrical boundary conditions of the PMN-PT layer dominate the propagation feature of the SH waves, and (iii) the thickness ratio has a significant effect on the phase velocity when the wave number is small. The results of the present paper can provide valuable theoretical references to the applications of piezoelectric/piezomagnectic structure in acoustic wave devices.  相似文献   

17.
Based on the shear spring model, the propagation of Love wave in two-layered piezoelectric/elastic composite plates under the influence of interfacial defect is investigated. The piezoelectric layer is electrically shorted at both top and bottom surfaces. The wave form solutions of the piezoelectric and elastic layers are obtained, and the dispersion equation is derived by subjecting the boundary conditions and the continuity conditions to the obtained wave form solutions. Numerical results are performed for PZT4/aluminum composite plate. The phase velocities and the mode shapes of mechanical displacement and electric potential are illustrated graphically. The results show that both the interfacial defect and the thickness ratio between the piezoelectric and elastic layers have significant effect on the propagation characteristics of Love wave. One important feature is observed that the interfacial defect always decreases the phase velocities.  相似文献   

18.
This paper is concerned with the effect of a biasing electric field on the propagation of Lamb waves in a piezoelectric plate. On the basis of three dimensional linear elastic equations and piezoelectric constitutive relations, the differential equations of motion under a biasing electric field are obtained and solved. Due to the symmetry of the plate, there are symmetric and antisymmetric modes with respect to the median plane of the piezoelectric plate. According to the characteristics of symmetric modes (odd potential state) and antisymmetric modes (even potential state), the phase velocity equations of symmetric and antisymmetric modes of Lamb wave propagation are obtained for both electrically open and shorted cases. The effect of a biasing electric field on the phase velocity, electromechanical coupling coefficient, stress field and mechanical displacement of symmetric and antisymmetric Lamb wave modes are discussed in this paper and an accompanying paper respectively. It is shown that the biasing electric field has significant effect on the phase velocity and electromechanical coupling coefficient, the time delay owning to the velocity change is useful for high voltage measurement and temperature compensation, the increase in the electromechanical coupling coefficient can be used to improve the efficiency of transduction.  相似文献   

19.
The paper investigates the existence of Love wave propagation in an initially stressed homogeneous layer over a porous half-space with irregular boundary surfaces. The method of separation of variables has been adopted to get an analytical solution for the dispersion equation and thus dispersion equations have been obtained in several particular cases. Propagation of Love wave is influenced by initial stress parameters, corrugation parameter and porosity of half-space. Velocity of Love waves have been plotted in several figures to study the effect of various parameters and found that the velocity of wave decreases with increases of non-dimensional wave number. It has been observed that the phase velocity decreases with increase of initial stress parameters and porosity of half-space.  相似文献   

20.
The influence of a viscous liquid on acoustic waves propagating in elastic or piezoelectric materials is of particular significance for development of liquid sensors. Bleustein–Gulyaev wave is a shear-type surface acoustic wave and has the advantage of not radiating energy into the adjacent liquid. These features make the B–G wave sensitive to changes in both mechanical and electrical properties of the surrounding environment. The Bleustein–Gulyaev wave has been reported to be a good candidate for liquid sensing application. In this paper, we investigate the potential application of B–G wave in 6 mm crystals for liquid sensing. The explicit dispersion relations for both open circuit and metalized surface boundary conditions are given. A numerical example of PZT-5H piezoelectric ceramic in contact with viscous liquid is calculated and discussed. Numerical results of attenuation and phase velocity versus viscosity, density of the liquid and wave frequency are presented. The paper is intended to provide essential data for liquid senor design and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号