首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
甲烷氧化细菌催化二氧化碳生物合成甲醇的研究   总被引:2,自引:0,他引:2  
甲烷氧化细菌中包含的甲烷单加氧酶(MMO)、甲醇脱氢酶(ADH)、甲醛脱氢酶(FaldDH)、甲酸脱氢酶(FateDH)经过一系列反应能够把甲烷深度氧化生成二氧化碳,并生成一定的能量物质.把二氧化碳还原为甲醇是一个需要能量的过程,目前还没有已知的有机体在温和条件下完成这一反应.研究发现,甲基弯菌Methylosi-nus trichosporium IMV 3011可以催化二氧化碳生物转化生成甲醇.在休眠的悬浮细胞中充人二氧化碳后,反应一段时间在反应液中检测到了甲醇.二氧化碳转化成甲醇是一个需要能量推动的反应,为了补充反应所消耗的能量.反应一段时间后需要用甲烷进行再生,以恢复细胞中的还原当量NADH.我们进行了反应再生的交替连续批式反应,甲醇积累量能够维持在一个比较稳定的水平.理论上,反应不会增加温室效应,这是一个有效的、环境友好的、可恢复的反应过程.  相似文献   

2.
Methylosinus trichosporium OB3b is a methanotrophic bacterium containing methane mono-oxygenase, catalyzing hydroxylation of methane to methanol. When methane is oxidized, the product is subsequently oxidized by methanol dehydrogenase contained in the same bacterium. To prevent further oxidation of methanol, the cell suspension was treated by cyclopropanol, an irreversible inhibitor for methanol dehydrogenase, leading to extracellular methanol accumulation. However, the reaction was terminated at approx 3 h with a final methanol concentration below 2.96 mmol/g dry cell. The methanol production efficiency (the ratio of the produced methanol per methane consumption) was 2.90%. By selecting the culture conditions and the reaction conditions, the reaction continued for 100 h, resulting in a methanol concentration of 152 mmol/g dry cell. This level was 51 times higher than that of the conventional reaction, and the methanol production efficiency was 61%.  相似文献   

3.
The recently discovered methanol dehydrogenase, XoxF, is a widespread enzyme used by methylotrophic bacteria to oxidize methanol for carbon and energy, and requires lanthanide ions for its activity. This enzyme represents an essential component of methanol utilization by both methanol- and methane-utilizing bacteria. The present investigation looks on the electronic, energetic and geometrical behavior of the methanol dehydrogenase from Methylacidiphilum fumariolicum SolV, which is strictly dependent on early lanthanide metals with +3 oxidation states, by examining enzyme-substrate complexes of all the lanthanides. We focus on the catalytic reaction mechanism of two methanol dehydrogenases having as cofactor europium and ytterbium belonging to the mid- and later- series of lanthanides, in comparison with the methanol dehydrogenase containing the cerium, one early lanthanide. Our results provide evidence for the influence of the lanthanide contraction effect in all the elementary steps of the catalytic reaction mechanism. This indication may prove useful for developing new catalytic machineries of enzymes that adopt new-to-nature transformations.  相似文献   

4.
溶胶-凝胶固定化多酶催化二氧化碳转化为甲醇反应初探   总被引:16,自引:0,他引:16  
 为了探索温室气体CO2的固定和利用的新途径,以正硅酸乙酯为\r\n前驱体,用改进的溶胶-凝胶法对甲酸脱氢酶、甲醛脱氢酶和乙醇脱氢\r\n酶进行了包埋共固定化,并以包埋的三种酶为催化剂,以还原型烟酰胺\r\n腺嘌呤二核苷酸(NADH)为电子供体,在低温低压下将CO2转化为甲醇\r\n.初步研究了反应温度、pH值、酶含量及NADH用量对甲醇收率的影响.\r\n实验结果表明,在37℃和pH7.0的条件下,甲醇的收率可达92.4%.\r\n由于酶空间构型的微小变化和空间位阻效应的存在,与液相酶反应结果\r\n相比,包埋后的酶活性略有降低.  相似文献   

5.
An analytical approach using the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) technique separated the proteome from the optic ganglia of Octopus vulgaris (OVOG). Approximately 600 protein spots were detected from the extraction when applying 150 μg protein to a 2D-PAGE gel in the pH range 5.0-8.0. Compared to the control, significant changes of 18 protein spots were observed in OVOG under the stress of native seawater containing 2% methanol for 72 h. Among these spots, we found that eight were down-regulated and ten were up-regulated in the gels, which were further identified using both peptide mass fingerprinting and database searches. Significant proteins such as glyceraldehyde-3-phosphate dehydrogenase, alpha subunit of succinyl-CoA synthetase, alcohol dehydrogenase, and long-chain specific acyl-CoA dehydrogenase were up-regulated proteins, whereas putative ABC transporter was a down -regulated protein. These differential proteins at the level of subcellular localization were further classified using LOCtree software with a hierarchical system of support vector machines. We found that most of the differential proteins in the gel could be identified as mitochondrial proteins, suggesting that these protective or marker proteins might help to prevent methanol poisoning via the mitochondria in the optical ganglia. The results indicated that both beta-tubulin and beta-actin were potential biomarkers as up-regulated proteins for monitoring methanol toxicosis associated with fish foods such as octopus and shark.  相似文献   

6.
Direct reaction of [Zn(OH)(L)]+, L = cis,cis-1,3,5-tris[(E,E)-3-(2-furyl)acrylideneamino]cyclohexane, with methanol gives a mixture of the starting material and [Zn(OMe)(L)]+; structural analysis of the complexes shows that they are models of reactive intermediates in the catalytic cycles of the zinc enzymes carbonic anhydrase and liver alcohol dehydrogenase.  相似文献   

7.
Ultraviolet photolysis of low concentrations of CH2I2 in methanol solution found that CH2I2 is converted into dimethoxymethane and some H+ and I- products. Picosecond time-resolved resonance Raman (ps-TR3) experiments observed that the isodiiodomethane (CH2I-I) photoproduct decayed faster as the concentration of methanol increases, suggesting that isodiiodomethane is reacting with methanol. Ab initio calculations indicate isodiiodomethane is able to react with methanol via an O-H insertion/HI elimination to form an iodoether (ICH2-O-CH3) and HI products. The iodoether can then further react via another O-H insertion/HI elimination reaction to form the dimethoxymethane (CH3-O-CH2-O-CH3) observed in the photochemistry experiments. A reaction mechanism consistent with these experimental and theoretical observations is proposed.  相似文献   

8.
Free radicals, in particular radical oxygen species (ROS), play an important role in the aetiology and pathogenesis of various diseases. Current research in many countries focuses on the use of local medicinal plants as a promising source of liver protective agents. This paper describes the hepatoprotective effects of the methanol extract and four isolated compounds from Ficus chlamydocarpa on CCl4-induced liver damage, as well as the possible antioxidant mechanisms involved in this protection. The DPPH test, along with the beta-Carotene-Linoleic Acid Model System and Ferric-Reducing Antioxidant Power assays, as well as the inhibition of microsomal lipid peroxidation were used to measure radical-scavenging and antioxidant activities. Pretreatment of rats with the methanol extract of F. chlamydocarpa before CCl4 administration, significantly prevented serum increase of hepatic enzyme markers, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), in a dose-dependent manner. The hepatoprotection was also associated with a significant enhancement in hepatic reduced glutathione (GSH) and a marked decrease of liver malondialdehyde (MDA). Among the four compounds 1-4, isolated from the methanol extract, alpha-amyrin acetate (1) and luteolin (4) showed a significant hepatoprotective activity, as indicated by their ability to prevent liver cell death and lactate dehydrogenase (LDH) leakage during CCl4 intoxication.  相似文献   

9.
Cu/ZrO2 catalysts have demonstrated effective in hydrogenation of CO2 to methanol, during which the Cu-ZrO2 interface plays a key role. Thus, maximizing the number of Cu-ZrO2 interface active sites is an effective strategy to develop ideal catalysts. This can be achieved by controlling the active metal size and employing porous supports. Metal-organic frameworks (MOFs) are valid candidates because of their rich, open-framework structures and tunable compositions. UiO-66 is a rigid metal-organic skeleton material with excellent hydrothermal and chemical stability that comprises Zr as the metal center and terephthalic acid (H2BDC) as the organic ligand. Herein, porous UiO-66 was chosen as the ZrO2 precursor, which can confine Cu nanoparticles within its pores/defects. As a result, we constructed a Cu-ZrO2 nanocomposite catalyst with high activity for CO2 hydrogenation to methanol. Many active interfaces could form when the catalysts were calcined at a moderate temperature, and the active interface was optimized by adjusting the calcination temperature and active metal size. Furthermore, the Cu-ZrO2 interface remained after CO2 hydrogenation to methanol, as confirmed by transmission electron microscopy (TEM), demonstrating the stability of the active interface. The catalyst structure and hydrogenation activity were influenced by the content of the active component and the calcination temperature; therefore, these parameters were explored to obtain an optimized catalyst. At 280 ℃ and 4.5 MPa, the optimized CZ-0.5-400 catalyst gave the highest methanol turnover frequency (TOF) of 13.4 h-1 with a methanol space-time yield (STY) of 587.8 g·kg-1·h-1 (calculated per kilogram of catalyst, the same below), a CO2 conversion of 12.6%, and a methanol selectivity of 62.4%. In situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) of CO adsorption over the optimized catalyst revealed a predominant, unreducible Cu+ species that was also identified by X-ray photoelectron spectroscopy (XPS). The favorable activity observed was due to this abundant Cu+ species coming from the Cu+-ZrO2 interface that served as the methanol synthesis active center and acted as a bridge for transporting hydrogen from the active Cu species to ZrO2. In addition, the oxygen vacancies of ZrO2 promoted the adsorption and activation of CO2. These vacancies and Cu+ trapped in the ZrO2 lattice are the active sites for methanol synthesis from CO2 hydrogenation. The X-ray diffraction (XRD) patterns of the catalyst before and after reaction revealed the stability of its structure, which was further verified by time-on-stream (TOS) tests. Furthermore, in situ DRIFTS and temperature-programmed surface reaction-mass spectroscopy (TPSR-MS) revealed the reaction mechanism of CO2 hydrogenation to methanol, which followed an HCOO-intermediated pathway.  相似文献   

10.
Alcohol dehydrogenase (ADH) catalyzes the final step in the biosynthesis of methanol from CO2. Here, we report the steady-state kinetics for ADH, using a homogeneous enzyme preparation with formaldehyde as the substrate and nicotinamide adenine dinucleotide (NADH) as the cofactor. When changing NADH concentrations with the fixed concentrations of HCHO (more or less than NADH), kinetic studies revealed a particular zigzag phenomenon for the first time. Increasing formaldehyde concentration can weaken substrate inhibition and improve catalytic efficiency. The kinetic mechanism of ADH was analyzed using the secondary fitting method. The double reciprocal plots (1/v~1/[HCHO] and 1/[NADH]) strongly demonstrated that the substrate inhibition by NADH was uncompetitive versus formaldehyde and partial. In the direction of formaldehyde reduction, ADH has an ordered kinetic mechanism with formaldehyde adding to enzyme first and product methanol released last. The second reactant NADH can combine with the enzyme–methanol complex and then methanol dissociates from it at a slower rate than from enzyme–methanol. The reaction velocity depends on the relative rates of the alternative pathways. The addition of NADH also accelerates the releasing of methanol. As a result, substrate inhibition and activation occurred intermittently, and the zigzag double reciprocal plot (1/v~1/[NADH]) was obtained.  相似文献   

11.
The use of engineered phenylalanine dehydrogenase N145A supported on Celite for the reductive amination of phenylpyruvic acid in homogeneous and biphasic aqueous-organic solvents is reported. The results indicate that the immobilised biocatalyst is remarkably robust, even in the presence of high concentrations of polar or non-polar organic solvents such as acetone, methanol, n-hexane, toluene and methylene chloride. Cofactor regeneration with alcohol dehydrogenase from Saccharomyces cerevisiae and ethanol was successfully explored. Application to the non-natural poorly water-soluble 2-oxo acid p-NO(2)-phenylpyruvic acid was successfully performed, resulting in the biocatalytic synthesis of p-NO(2)-phenylalanine. In all cases 100% stereoselectivity for the production of the amino acid was retained.  相似文献   

12.
Kinetics of methanol steam reforming over COPZr-2 catalyst   总被引:1,自引:0,他引:1       下载免费PDF全文
The COPZr-2 catalyst, which was prepared in our prophase research, showed good catalytic performance in methanol steam reforming reaction. In this article, the best one was chosen as an example to study the reaction kinetics of methanol steam reforming over this type of catalyst. First, the effects of methanol conversion to outlet CO2 and methanol conversion to outlet CO on methanol pseudo contact time W/FMeOH were investigated. Then by applying the reaction route that methanol direct reforming (DR) and methanol decomposition (DE) were carried out in parallel, the reaction kinetic model with power function type was established. And the parameters for the model were estimated using a non-linear regression program which computed weighted least squares of the defined objects function. Finally, the kinetic model passed the correlation test and the F-test.  相似文献   

13.
A simple, rapid, and effective assay based on ultrafiltration combined with high‐performance liquid chromatography and high‐speed countercurrent chromatography was developed for screening and purifying alcohol dehydrogenase inhibitors from Glycyrrhiza uralensis root extract. Experiments were carried out to optimize binding conditions including alcohol dehydrogenase concentration, incubation time, temperature, and pH. By comparing the chromatograms, three compounds were found possessing alcohol dehydrogenase binding activity in Glycyrrhiza uralensis root. Under the target‐guidance of ultrafiltration combined with the high‐performance liquid chromatography experiment, liquiritin ( 1 ), isoliquiritin ( 2 ), and liquiritigenin ( 3 ) were separated by high‐speed countercurrent chromatography using ethyl acetate/methanol/water (5:1:4) as the solvent system. The alcohol dehydrogenase inhibitory activities of these three isolated compounds were assessed; compound 2 showed strongest inhibitory activity with an IC50 of 8.95 μM. The results of the present study indicated that the combinative method using ultrafiltration, high‐performance liquid chromatography and high‐speed countercurrent chromatography could be widely applied for the rapid screening and isolation of enzyme inhibitors from complex mixtures.  相似文献   

14.
Electrocatalytic oxidation of methanol on a glassy carbon disc electrode modified with Ni(II)-1-(2-pyridylazo)-2-naphthol (Ni-PAN) complex and conditioned by potential recycling in a limited range (between 100–600 mV) in 0.1 M NaOH solution, abbreviated as NiPANME, is studied by cyclic voltammetry in alkaline medium. The results are compared with those obtained for a NiO modified glassy-carbon electrode, NiOME, prepared in similar conditions. The findings show that the NiPAN film behaves as an efficient electrocatalyst for the oxidation of methanol in alkaline medium via Ni(III) species with the cross-exchange reaction occurring throughout the layer at a low concentration of methanol and for a thin film of modifier. Effects of the scan rate and methanol concentration on the methanol oxidation are investigated. The cyclic voltammetry and amperometry methods are used to investigate the methanol electrooxidation at the modified electrode. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 2, pp. 196–202. The text was submitted by the authors in English.  相似文献   

15.
The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO(2)(110) was studied using temperature-programmed desorption (TPD). On a vacuum-annealed TiO(2)(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K. In contrast, acetone molecules were stabilized on an oxidized surface against displacement by methanol through formation of acetone diolate species. The behavior of acetone with methanol differs from the interactions between acetone and water which are less competitive. Examination of acetone + methanol and acetone + water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO(2)(110) surface by water are more likely to be retained in the near-surface region, in turn having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate.  相似文献   

16.
The cascade use of enzymatic activities allows for the preparation of enantiomerically pure epoxides. In particular, using whole-cell biocatalysts we can prepare both (?)-[3-(oxiran-2-yl)phenyl]methanol and (?)-3-(oxiran-2-yl)benzoic acid in one-pot, two or three steps procedure. The yield is quantitative and enantiomeric purity greater than 95%. The selected biocatalysts contain a styrene monoxygenase from Pseudomonas fluorescens ST and a naphthalene dihydrodiol dehydrogenase from P. fluorescens N3, cloned and expressed in Escherichia coli.  相似文献   

17.
[Structure: see text]. Ab initio calculations were used to study the S(N)2 reactions of the CH3OCH2I molecule with a methoxide ion (CH3O-) and a methanol molecule by systematically building up the reaction system with explicit incorporation of the methanol solvent molecules. For the reaction of CH3OCH2I with a methoxide ion, the explicit incorporation of the methanol molecules to better solvate the methoxide ion led to an increase in the barrier to reaction. For the reaction of CH3OCH2I with a methanol molecule, the explicit incorporation of the methanol molecules led to a decrease in the barrier to reaction because of an inclination of this reaction to proceed with the nucleophilic displacements accompanied by proton transfer through the H-bonding chain. The H-bonding chain served as both acid and base catalysts for the displacement reaction. A ca. 10(15)-fold acceleration of the methanol tetramer incorporated S(N)2 reaction was predicted relative to the corresponding methanol monomer reaction. The properties of the reactions examined are discussed briefly.  相似文献   

18.
The influence of a hydroxyl group simulating Ser-48 in the hydride-transfer step characteristic of liver alcohol dehydrogenase is studied on the hydride-transfer reaction as modeled by a methanolate anion interacting with a cyclo propenyl cation. It is shown first that this is an adequate model by comparing it to the methanolate-pyrydinium cation model transition structure, (TS ). The side-chain effect is modeled first by adding water and then with methanol located at the position that Ser-48 occupies in the enzyme; a supermolecule approach is used. It is found that (i) the normalized advance coordinate (NAC ) for the exchanged hydrogen has an invariant value at the TS and the reactant, while for the product, the NAC depends upon the external perturbation introduced by the ancillary molecule (the TS is reactant-like); (ii) the products are strongly destabilized, so the (activation) barrier with respect to the TS diminishes; (iii) the energy gap between reactants and products is sensibly diminished by the presence of methanol; (iv) the alcoholate moiety in the hydride transfer complex is not spontaneously protonated; and (v) there is a negligible charge transfer between the hydride-transfer system and models of Ser-48. In the present simplified model, methanol appears to have a catalytic effect via hydrogen bonding. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Natural photosynthesis is an effective route for the clean and sustainable conversion of CO2 into high‐energy chemicals. Inspired by the natural process, a tandem photoelectrochemical (PEC) cell with an integrated enzyme‐cascade (TPIEC) system was designed, which transfers photogenerated electrons to a multienzyme cascade for the biocatalyzed reduction of CO2 to methanol. A hematite photoanode and a bismuth ferrite photocathode were applied to fabricate the iron oxide based tandem PEC cell for visible‐light‐assisted regeneration of the nicotinamide cofactor (NADH). The cell utilized water as an electron donor and spontaneously regenerated NADH. To complete the TPIEC system, a superior three‐dehydrogenase cascade system was employed in the cathodic part of the PEC cell. Under applied bias, the TPIEC system achieved a high methanol conversion output of 220 μm h−1, 1280 μmol g−1 h−1 using readily available solar energy and water.  相似文献   

20.
CO2/H2和(CO/CO2)+H2低压合成甲醇催化过程的本质   总被引:8,自引:0,他引:8  
通过在Cu/ZnO/Al2O3催化剂上CO2+H2,CO+H2和(CO/CO2)+H2催化反应动力学研究对合成甲醇动力学和反应机理进行了细致分析,提出合成甲醇的反应机理,解释了在(CO/CO2)+H2合成甲醇过程中少量CO2的作用及合成甲醇的直接碳源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号